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1. Introduction

Bioimpedance technology can detect cancerous lymph nodes (Hong et al. 2020), diagnose a
broad range of disorders (Ibrahim et al. 2005, Haas et al. 2012, Cumming et al. 2014, Zamani
et al. 2018, Parke et al. 2015, Rutkove & Sanchez 2018) and evaluate treatment outcomes
(Lorenzo et al. 2020). The working principle consists of applying a nonstimulating,
nonionizing electrical current through tissue using two dedicated current electrodes and
recording the voltage generated with a second pair of dedicated electrodes. From the
amplitude and time-lag relationship between the current and voltage signals, impedance data
is measured (Grimnes & Martinsen 2011).

The impedance reflects the exogenous electrical conduction property of tissues. These
electrical properties measure how strongly tissue resists (or conducts) alternating electric
current and how capable is the tissue to store electric charge within itself (Schwan &
Foster 1989). They are determined by the electrical properties, namely the conductivity
σ (S m−1) and the relative permittivity εr (dimensionless), relative to the permittivity of
the vacuum ε0 (F m−1). In skeletal muscle for example, these two fundamental electrical
properties change with disease progression (Sanchez et al. 2020).
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Figure 1. Illustration of tetrapolar bioimpedance measurement of nonhomogeneous tissue
using surface (A) and penetrating (B) electrodes. In the schematic, the outer two electrodes
are the high (source) and low (sink) current electrodes, whereas the inner electrodes are the
high and low potential recording electrodes required for bioimpedance measurement.

As illustrated in Figure 1, the electrical current applied for the biompedance
measurement might flow through more than one tissue or fluid, each with different electrical
properties. Formally, these different tissues and fluids will contribute to the apparent
impedance Z ∈ C (Ohms) measured as follows (Geselowitz 1971)

Z =

∫
Ω

(
JI(r)

σ(r)+ τωkεr(r)ε0

)
·JV (r) dr,

where Ω ∈R3 is the domain with coordinate system r := (x,y,z), JI,V ∈C (m−2) are the local
current density vectors found swapping the injection of electrical current between the current I
and voltage V electrodes, respectively, ωk ∈R (rad s−1) is the (angular) frequency of electrical
current, and τ :=

√
−1 is the imaginary unit (dimensionless). The above expression shows that

depending on (1) the electrodes, (2) the domain and (3) the electrical properties of the tissues
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within the domain, the apparent impedance might represent an amalgam of different tissues.
For example, in a localized surface electrical impedance myography measurements, data are
influenced by skin and subcutaneous fat tissues at the recording site (Kwon, Malik, Rutkove
& Sanchez 2019). If the electrodes are placed farther apart on a limb for example, then the
impedance will become dependent on the geometry of the domain (Bachasson et al. 2021).
Figure 2 summarizes the complexity of the different existing bioimpedance models according
to the electrodes, domain and tissue.
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Figure 2. Summary of forward bioimpedance models. The assumptions of the framework
developed in this study are italicized.

In this paper we develop a framework capable of describing nonhomogeneous impedance
measurement containing multiple tissues with different electrical properties, electrodes’
positioning, and arbitrary domain shapes. The paper is organized as follows. We first define
a nonhomogeneous model using mathematical notation in Section 2. Then nonhomogeneous
impedance of series, parallel, series-parallel circuit-like topologies are analytically modeled
in half space in Section 3, 4, 5, respectively. Section 6 extends the series-parallel circuit-like
topology model to full space. Section 7 describes the simulation settings and the simulation
results in Section 8 confirm the usefulness of the novel framework presented. Finally, the
contribution is discussed in Section 9 and summarized in the form of conclusions in Section
10.

2. Nonhomogeneous tissues: series, parallel, and series-parallel circuit-like topologies

In this paper we model nonhomogeneous tissue as a semi-infinite space Λ− ∈R3
− and infinite

space Λ ∈ R3 containing M ∈ N≥1 domains. Then, we study bioimpedance measurements in
{Λ−,Λ} considering 3 different nonhomogeneous “electrical circuit-like” topologies shown in
Figure 3 according to how the current flows from one domain to another: series, parallel and
series-parallel, formally defined next. Let’s start by considering M non-overlapping domains
Ωi ∈ {Λ−,Λ} with i ∈ {1,2, · · · ,M}, where each domain has different electrical properties



A framework for modeling bioimpedance measurements of nonhomogeneous tissues 4

(these electrical properties are defined in the next section) satisfying
⋃

1≤i≤M Ωi = {Λ−,Λ}.
We next define ∂Ωi as the outer surface boundary of Ωi. Then, ∀i, j ∈ {1,2, · · · ,M} and i 6= j,
two domains are non-overlapping if Ωi∩Ω j = ∂Ωk where k ∈ {i, j} or Ωi∩Ω j =∅. Note that
in the case where Ωi∩Ω j = ∂Ωk, the electrical current can propagate from Ωi to Ω j through
the boundary Ωk directly, whereas in the case where Ωi∩Ω j =∅ the current must propagate
through another domain first.
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Figure 3. Schematic representing nonhomogeneous tissue as a semi-infinite domain Λ− ∈R3
−

and infinite domain Λ ∈ R3 with (A) series (denoted by the superscript S), (B) parallel
(denoted by the superscript P) and (C) series-parallel (denoted by the superscript SP) electrical
circuit-like topology containing M = 5 subdomains Ωi with boundary ∂Ωi and i ∈ {1, · · · ,M}.

We define Ωi neighbor to Ω j as i| j when Ωi∩Ω j = ∂Ωk. The neighbor definition satisfies
the principle of reciprocity, that is to say, Ωi is neighbor to Ω j, and vice versa. Then, we can
define a neighbor set N(Ωi) := {Ω j|(i| j)} for domain Ωi as the set containing all neighbors of
Ωi. Moreover, we define the cardinality of neighbor set |N(Ωi)| as the number of all elements
in N(Ωi). Henceforth, superscripts + and− of N(Ωi) refer to the neighbors outside and inside
Ωi, respectively, so that |N(Ωi)|= |N+(Ωi)|+ |N−(Ωi)|. To describe the elements in N±(Ωi),
we use the notation i± ∈ { j|Ω j ∈ N±(Ωi)}. Then, the outer/inner neighbor relation of Ωi

is Ωi± ∈ N±(Ωi). Finally, using these notations, we can define series, parallel and series-
parallel topology as shown in Table 3. Note that series and parallel topology are two specific
cases of a more general series-parallel topology.

Next we develop in Sections 3, 4 and 5 a forward analytical framework modeling
tetrapolar impedance measurements of nonhomogeneous tissue considering a series, parallel
and series-parallel circuit-like topologies, respectively.

3. Electrical impedance model in half space with series circuit-like topology

The coordinate r := (x,y,z) defines a position in ΛS
−, where the superscript S denotes a series

circuit-like topology. To determine the electrical potential distribution within ΛS
− (see Figure

4 A), we consider a sinusoidal electrical current of amplitude I ∈ R at (angular) frequency
ωk ∈ R>0 (rad s−1), generated by point-like source S at rS := (xS,yS,0) with current sink at
infinity. In other words, this assumption reduces to considering only one (positive) current
being applied to the model responsible of generating the distribution of electrical potential.
The voltage recording point-like electrode E at rE := (xE,yE,0) is then placed on ∂Ω1 : z = 0
to record the electrical potential with reference zero potential at infinity. Henceforth, we
have following assumptions: (1) the current source and voltage recording electrodes are
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Table 1. Definitions of series, parallel, series-parallel circuit-like topology for
nonhomogeneous tissue with i, i± ∈ {1,2,3, · · · ,M}.

Topology Definition Property

Series

|N(Ω1)|= |N−(Ω1)|= 1,
|N+(Ωi)|= |N−(Ωi)|= 1,

and |N(ΩM)|= |N+(ΩM)|= 1,
where i 6= 1,M

Ωi ∈ N−(Ωi−1)

where i 6= 1

Parallel
|N(Ω1)|= |N−(Ω1)|= M−1
and |N(Ωi)|= |N+(Ωi)|= 1,

where i 6= 1

Ωi ∈ N−(Ω1)

where i 6= 1

Series-parallel

|N+(Ω1)|= 0,
|N+(Ωi)|= 1,

and |N(ΩM)|= |N+(ΩM)|= 1,
where i 6= 1,M.

Ωi+ ∈ N+(Ωi)

and Ωi− ∈ N−(Ωi)
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Figure 4. (A) Schematic illustrating a nonhomogeneous tissue modeled as series circuit-like
topology in half space ΛS

− (A) and its mirrored image in R3 (B). There are M nested domains
Ωi in ΛS

− where i ∈ {1,2,3, · · · ,M}. Surface ∂Ωi is the outer boundary of Ωi with isotropic
admittivity is γi. Surface ∂Ω1 is a plane (x,y,0) while other surface ∂Ωi (i 6= 1) have arbitrary
surfaces. A point source S at rS := (xS,yS,0) on ∂Ω1 generates sinusoidal current. Another
point E at rE := (xE,yE,0) is a potential recording electrode on ∂Ω1. Point Qi (i > 1) is at
position rQi := (xQi ,yQi ,zQi) on ∂Ωi, and ni is the outward normal vector of ∂Ωi at Qi. RSE

is the distance between S and E. (B) The half-space model ΛS
− is mirrored with respect to

plane ∂Ω1 and forms the mirrored full space R3. All mirrored elements in (B) are overlined
to distinguish form their nonmirrored counterparts shown in (A). (C) Schematic illustrating
a tetrapolar electrical impedance measurement on ∂Ω1 for ΛS

−. The current source (+) and
sink (−) electrodes are S± and the high (+) and low (−) voltage measuring electrodes are E±
placed on ∂Ω1.

dimensionless; (2), the domains have isotropic electrical properties; (3), there are no free
charges in the model; and (4), the current cannot flow outside the model.



A framework for modeling bioimpedance measurements of nonhomogeneous tissues 6

3.1. Governing equation

From Maxwell equations in quasistationary regime (Maxwell 1873), the governing equation
of the electrical potential distribution US(r) ∈ C (V) is the generalized Poisson equation

∇ ·
(

γ
S(r)∇US(r)

)
=−Iδ (r− rS), (1)

where γS ∈ C (S m−1) is the nonhomogeneous admittivity property and δ (r) is the Dirac
delta function. To solve (1), we first need to describe the admittivity distribution in ΛS

−. The
isotropic admittivity in domain Ωi is defined as γi := σi + τωkεi, σi ∈ R>0 and εi ∈ R>0 are
the conductivity (S m−1) and the absolute permittivity (F m−1) properties in Ωi at frequency
ωk, respectively. Due to the nested structure of subdomains in ΛS

− shown in Figure 4 A, the
admittivity distribution γS(r) can be explicitly described from series topology in Table 3 as

γ
S(r) := γ1 +

M

∑
i=2

(γi− γi−1)H(r+ni), (2)

where function H(r) is the Heaviside unit step function, vector ni is the outward normal
vector of ∂Ωi at point Qi, the latter an arbitrary point on ∂Ωi. Applying the half-maximum
convention of H(r), one can find admittivity (γi + γi−1)/2 on ∂Ωi with i 6= 1 from (2). Then,
the Dirac delta function δ (r) can be expressed as the divergence of Heaviside unit step
function ∇H(rQi) = δ (rQi)ni, where rQi := (xQi,yQi,zQi) is the position at Qi. Then we can
rewrite (1) as

∇
2US(r) =−Iδ (r− rS)

γS(r)
−2

M

∑
i=2

Γi−1|iδ (∂Ωi)
∂US(r)

∂ni
·ni, (3)

where r 6= rS, Γi| j ∈ C (dimensionless) is the reflection coefficient of the boundary between
subdomains Ωi and Ω j defined as Γi| j := (γi− γ j)/(γi + γ j) with i, j ∈ {1,2, · · · ,M} and i 6= j.

The boundary condition is ∂US(r)/∂ z
∣∣
∂Ω1

= 0. To satisfy this boundary condition, we
apply the method of images charges to (3). As shown in Figure 4 B, the half space model ΛS

−
is mirrored with respect to the plane z = 0 to construct a full space model in R3. Considering
the image reflection term, the governing equation becomes

∇
2US(r) =−2Iδ (r− rS)

γS(r)
−2

M

∑
i=2

Γi−1|i

[
δ (∂Ωi)

∂US(r)
∂ni

·ni +δ (∂Ωi)
∂US(r)

∂ni
·ni

]
, (4)

where all overlined notations are mirrored elements from their original counterparts with
respect to the plane ∂Ω1.
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3.2. Electrical potential distribution

To obtain the expression of potential US(r) analytically, we simplify (4) with the method of
Green’s function as in (Cohl & Tohline 1999), namely

US(r) =U0(r)+∑
M
i=2US

Ωi
(r)

U0(r) = I
2πγ1|r−rS|

US
Ωi
(r) =

Γi−1|i
2π

[∫∫
∂Ωi

∂US(rQi)

∂ni
·ni

d(∂Ωi)

|r−rQi|
+
∫∫

∂Ωi

∂US(rQi
)

∂ni
·ni

d(∂Ωi)∣∣∣r−rQi

∣∣∣
]
,

(5)

where operator | · | is the L2 norm, d(∂Ωi) and d
(
∂Ωi

)
represent the area of the

micro-elements ∂Ωi and ∂Ωi at Qi and Qi, respectively. We next solve (5) using an
iterative approximation. Following the same rationale as in (Wazwaz 2007), the pth-order
approximated (denoted by˜) electrical potential distribution with series topology ŨS(p)(r)∈C
(V) is defined as

ŨS(p)(r) :=U0(r)+∑
M
i=2ŨS(p)

Ωi
(r)

ŨS(0)(r) :=U0(r)

ŨS(p)
Ωi

(r) :=
Γi−1|i

2π

[∫∫
∂Ωi

∂ŨS(p−1)(rQi)

∂ni
·ni

d(∂Ωi)

|r−rQi|
+
∫∫

∂Ωi

∂ŨS(p−1)(rQi
)

∂ni
·ni

d(∂Ωi)∣∣∣r−rQi

∣∣∣
]
,

(6)

where p ∈ N>0 is the order of approximation. According to the definition of reflection
coefficient, we have

∣∣Γi| j
∣∣ ≤ 1. Then the analytical expression of potential distribution gives

US(r) = limp→∞ŨS(p)(r).
The electrical potential is recorded with electrode E at rE := (xE,yE,0) (see Figure 4 A).

Then, we can simplify the third expression in (6) based on the symmetry of image charges
(see Figure 4 B) as

ŨS(p)
Ωi

(rE) =
Γi−1|i

π

∫∫
∂Ωi

∂ŨS(p−1)(rQi)

∂ni
·ni

d(∂Ωi)∣∣rE− rQi

∣∣ .
The 1st-order approximated electrical potential can be deduced from (6) as

ŨS(1)(rE) =
I

2πγ1

(
1

RSE
+2

M

∑
i=2

KΩiΓi−1|i

)
, (7)

where

KΩi :=− 1
2π

∫∫
∂Ωi

∂
(∣∣rQi− rS

∣∣)
∂ni

·ni
d(∂Ωi)∣∣rQi− rS
∣∣2 ∣∣rE− rQi

∣∣
is a geometrical constant (m−1) determined by the shape and position of Ωi, and distance RSE

(m) between electrode S and E.
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3.3. Apparent electrical impedance

Consider the tetrapolar impedance model shown in Figure 4 C where S+ and S− are the
current source (+) and sink (−) electrodes (i.e., the potential generated by both the source
and sink current electrodes), respectively, and where E+ and E− are the high (+) and low (−)
voltage recording electrodes, respectively. The 1st-order potential difference ∆ŨS(1) ∈ C (V)
is defined from (7) as

∆ŨS(1) :=
(

ŨS(1)
++ −ŨS(1)

+−

)
−
(

ŨS(1)
−+ −ŨS(1)

−−

)
,

where ŨS(1)
++ and ŨS(1)

+− are the 1st-order approximation of the electrical potential generated
by current source electrode S+ and recorded by the high potential E+ and low potential E−
electrode, respectively, ŨS(1)

−+ and ŨS(1)
−− are the first order approximation of the electrical

potential generated by current source electrode S− and recorded by the high potential E+ and
low potential E− electrode, respectively. According to (7), we have

∆ŨS(1) =
I

2πγ1

(
G+2

M

∑
i=2

KiΓi−1|i

)
(8)

where the geometrical constant G := 1/R++−1/R+−+1/R−−−1/R−+ (m−1) is determined
by the position of the current and voltage electrodes, Rwv (m) is the distance between electrode
Sv and Ew with w,v ∈ {+,−}, the geometrical coefficient Ki := K++

Ωi
−K+−

Ωi
+K−−

Ωi
−K−+

Ωi

(m−1) is determined by the shape and position of domain Ωi with

Kwv
Ωi

:=− 1
2π

∫∫
∂Ωi

∂RQiSv(rQi)

∂ni
·ni

d(∂Ωi)

R2
QiSv

(rQi)RQiEw(rQi)
(m−1),

where RQiSv and RQiEw (m) are the distance between point Qi and electrodes Sv and Ew,
respectively. From (8), the 1st-order approximated apparent electrical impedance ZS(1) ∈ C
(Ohm) is expressed as

ZS(1) := RS(1)+ τXS(1) =
∆ŨS(1)

I
=

1
2πγ1

(
G+2

M

∑
i=2

KiΓi−1|i

)
, (9)

where RS(1),XS(1) ∈ R (Ohm) are the 1st-order approximated apparent resistance and
reactance, respectively.

3.4. Apparent electrical impedance sensitivity to changes in tissue electrical properties

Next, we study the apparent impedance sensitivity to changes in intrinsic electrical properties
within the model. For this, we define ∆γi := ∆σi + τω∆εi in (9) and |∆γi| � |γi|. Then
based on 1st-order Taylor series for ∆γi/γi in (9), one can approximate the apparent electrical
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Figure 5. Schematic of case study 1. (A) Nonhomogeneous model ΛS
− ∈ R3

− with series
circuit-like topology consisting of a concentric spherical shell Ω2 and kernel Ω3 inside
tissue Ω1. The admittivity and outer boundary of Ωi are γi and ∂Ωi, i ∈ {1,2,3}, with
∂Ω1 := (x,y,0). Domains Ω{2,3} are concentric at C{2,3} and radii b{2,3}. A point-like source
S at rS := (xS,yS,0) generates electrical current. The point-like electrode E at rE := (xE,yE,0)
measures the electrical potential. Length RSE is the distance between S and E. Angle θ is the
angle between the line segment |SC| and |EC|. (B) Schematic illustrating a surface tetrapolar
electrical impedance measurement. The current source (+) and sink (−) electrodes are S± and
the high (+) and low (−) voltage measuring electrodes are E± placed on ∂Ω1. (C) Tetrapolar
electrical impedance measurement with linearly aligned current electrodes S± and measuring
voltage electrodes E±. The spherical center C satisfies |CS+| = |CS−|. The distance from
C{2,3} to line segment |E+E−| are l{2,3}. The distances between current and voltage electrodes
is A, whereas the distance between voltage electrodes is B.

impedance sensitivity ∆ZS(1)/ZS(1) to relative change of admittivity ∆γi/γi, as follows

∆ZS(1)

ZS(1)
≈



−∆γi
γi

(
1− 2ϖi|i+1

ZS(1)

)
if i = 1

−∆γi
γi

2ϖi−1|i
ZS(1) if i = M

−∆γi
γi

(
2ϖi−1|i
ZS(1) +

2ϖi|i+1

ZS(1)

)
else,

(10)

where ϖ j|i := Kiγiγ j/
(
πγ1(γi + γ j)

2) (Ohm).

3.5. Case study 1

Here we consider the case study of a nonhomogeneous tissue consisting of M = 3 domains
where Ω2 and Ω3 are modeled as a concentric spherical shell-kernel (see Figure 5 A). The
1st-order approximated electrical potential distribution ŨS(1)(rE) recorded on ∂Ω1 can be
expressed using (7) as follows

KΩi =
1
bi

∞

∑
n=0

2n
2n+1

(
b2

i
RSCiRECi

)n+1

Pn(cosθi), (11)

where i ∈ {2,3}, θi (rad) is the angle between line segment |SCi| and the line segment |ECi|,
cosθi = (R2

SCi
+R2

ECi
−R2

SE)/(2RSCiRECi), bi (m) is the radius of Ωi, RPCi (m) is the distance
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between point P ∈ {S,E} and Ci, and Pn(x) are Legendre polynomials. We refer the reader
to Lemma 1 in the Supplementary Information for further details regarding the mathematical
derivation of the spherical geometrical coefficient in (11).

Figure 5 B illustrates the placement of current S± and voltage E± electrodes for
impedance measurement. Then, the 1st-order approximated electrical potential difference,
apparent electrical impedance and apparent impedance sensitivity can be evaluated using (8),
(9) and (10), respectively, with

Ki =
∞

∑
n=0

Gi,n, (12)

and

Gi,n :=
2nb2n+1

i
2n+1

(
Pn(cosθi++)

Rn+1
CiS+

Rn+1
CiE+

− Pn(cosθi+−)

Rn+1
CiS−Rn+1

CiE+

+
Pn(cosθi−−)

Rn+1
CiS−Rn+1

CiE−

− Pn(cosθi−+)

Rn+1
CiS+

Rn+1
CiE−

)
,

in which θivw (rad) with w,v ∈ {+,−} is the angle between line segment |CiSv| and |CiEw|,
RCiSv and RCiEw (m) are the distances between Ci and Sv and Ew, respectively.

If we consider the electrodes are linearly aligned on ∂Ω1 and satisfy |CiS+| = |CiS−| as
illustrated in Figure 5 C, then we can simplify geometrical constant G in (8) and (9) as follows

G =
2B

A(A+B)
, (13)

where A and B (m) are the interelectrode distances between current-voltage and voltage-
voltage electrodes, respectively. We can also simplify Gi,n in (12) as

Gi,n =
4nb2n+1

i
2n+1

(
4
Li

)n+1(
Pn

(
4l2

i + t
Li

)
−Pn

(
4l2

i − t
Li

))
and Gi,0 = 0, where Li :=

√
(2A+B)2 +4l2

i

√
B2 +4l2

i and t := 2AB+B2, li is the distance
(m) between Ci and the center of line segment |E+E−|.

3.6. Case study 2

Here we consider the case study of a nonhomogeneous layered tissue consisting of M = 3
domains and where Ω1, Ω2 and Ω3 are stacked (see Figure 6 A). The model is defined
by Ω1 : 0 < z < h1, Ω2 : h1 < z < h1 + h2 and Ω3 : z > h1 + h2 with planar boundaries
∂Ω1 := (x,y,0), ∂Ω2 := (x,y,h1) and ∂Ω3 := (x,y,h2), respectively. Distances h1 and h2

(m) represent the thickness of tissues Ω1 and Ω2, respectively. The 1st-order approximated
electrical potential distribution ŨS(1)(rE) on ∂Ω1 can be expressed using (7), where

KΩi =
1√

R2
SE +4N2

i

, (14)

where i ∈ {2,3}, Ni := ∑
i−1
j=1 h j (m) is the distance from ∂Ωi to ∂Ω1 and RSE (m) is the

distance between S and E. We refer the reader to Lemma 2 in the Supplementary Information
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Figure 6. Schematic of case study 2. (A) Nonhomogeneous model ΛS
− ∈ R3

− with series
circuit-like topology consisting of a three-layered domain Ωi, i ∈ {1,2,3}. The admittivity
and boundary of domain Ωi are γi and ∂Ω1 := (x,y,0), ∂Ω2 := (x,y,h1) and ∂Ω3 := (x,y,h2)

, respectively. A point-like source S at rS := (xS,yS,0) generates electrical current. The
point-like electrode E at rE := (xE,yE,0) measures the electrical potential. Length RSE is the
distance between S and E. (B) Schematic illustrating a surface tetrapolar electrical impedance
measurement. The current source (+) and sink (−) electrodes are S± and the high (+) and low
(−) voltage measuring electrodes are E±. (C) Tetrapolar electrical impedance measurement
with linearly aligned current source electrodes S± and measuring voltage electrodes E±. The
distance between current and voltage electrodes is A, whereas the distance between voltage
electrodes is B.

for further details regarding the mathematical derivation of planar geometrical coefficient in
(14).

In this case, the recorded electrical potential difference, apparent electrical impedance
and apparent impedance sensitivity in Figure 6 B can be evaluated using (8), (9) and (10) with

Ki =
1√

R2
S+E+

+4N2
i

− 1√
R2

S−E+
+4N2

i

+
1√

R2
S−E−+4N2

i

− 1√
R2

S+E−+4N2
i

, (15)

where Rmn (m) is the distance between m ∈ {S+,S−} and n ∈ {E+,E−}.
If we consider the four electrodes linearly aligned (see Figure 6 C), then the geometrical

constant (15) simplifies to

Ki =
2√

A2 +4N2
i

− 2√
(A+B)2 +4N2

i

,

with A and B (m) the distances between current and voltage electrodes and inner voltage
electrodes, respectively, and G is given in (13).

4. Electrical impedance model in half space with parallel circuit-like topology

In this section we consider a nonhomogeneous model ΛP
− ∈ R3

− consisting of circuit-like
parallel topology domains. The model assumptions are the same as in Section 3.

4.1. Governing equation

As in Section 3, the governing equation is

∇ ·
(
γ

P(r)∇UP(r)
)
=−Iδ (r− rS). (16)
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Figure 7. (A) Schematic illustrating a nonhomogeneous tissue modeled as parallel circuit-
like topology in half space ΛP

−. There are M domains Ωi with i ∈ {1,2,3, · · · ,M} and
isotropic admittivity γi in ΛP

−, where M−1 domains Ωi and i 6= 1 are intruded in Ω1. Surface
∂Ω1 := (x,y,0) is the planar boundary of Ω1, while ∂Ωi are outer boundary of Ωi with an
arbitrary surface. A point-like source S at rS := (xS,yS,0) on ∂Ω1 generates electrical current.
Another point-like electrode E at rE := (xE,yE,0) is a potential recording electrode on ∂Ω1.
Point Qi (i 6= 1) has coordinates rQi := (xQi ,yQi ,zQi) on ∂Ωi, and ni is the outward normal
vector of ∂Ωi at Qi. Length RSE is the distance between electrode S and E. (B) Schematic
illustrating a surface tetrapolar electrical impedance measurement. The current source (+)
and sink (−) electrodes are S± and the high (+) and low (−) voltage measuring electrodes are
E± placed on ∂Ω1, respectively.

where γP ∈C (S m−1) and UP ∈C (V) are the nonhomogeneous admittivity and the electrical
potential in ΛP

−, respectively. The subdomains are arranged as shown in Figure 7 A. According
to Table 3, the admittivity distribution γP(r) can be explicitly expressed as

γ
P(r) := γ1 +

M

∑
i=2

(γi− γ1)H(r+ni). (17)

Following the same rationale as in Section 3, we can apply the method of images charges to
(16), namely

∇
2UP(r) =−2Iδ (r− rS)

γP(r)
−2

M

∑
i=2

Γ1|i

[
δ (∂Ωi)

∂UP(r)
∂ni

·ni +δ (∂Ωi)
∂UP(r)

∂ni
·ni

]
, (18)

where r 6= rS and Γ1|i is the reflection coefficient.

4.2. Electrical potential distribution

Similar to (6), we can introduce a pth-order approximated electrical potential distribution
ŨP(p)(r) ∈ C (V) from (18), i.e.,

ŨP(p)(r) :=U0(r)+∑
M
i=2UP(p)

Ωi
(r)

ŨP(0)(r) :=U0(r)

ŨP(p)
Ωi

(r) :=
Γ1|i
2π

[∫∫
∂Ωi

∂ŨP(p−1)(rQi)

∂ni
·ni

d(∂Ωi)

|r−rQi|
+
∫∫

∂Ωi

∂ŨP(p−1)(rQi
)

∂ni
·ni

d(∂Ωi)∣∣∣r−rQi

∣∣∣
]
,

(19)

where UP(r) = limp→∞ŨP(p)(r).
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The electrical potential is recorded with electrode E at rE := (xE,yE,0) (see Figure 7 A).
Then, we can simplify (19) based on the symmetry of the image model with respect to ∂Ω1

(see Figure 4 B). The 1st-order approximated electrical potential at rE is

ŨP(1)(rE) =
I

2πγ1

(
1

RSE
+2

M

∑
i=2

KΩiΓ1|i

)
. (20)

4.3. Apparent electrical impedance

We consider a tetrapolar impedance model as shown in Figure 7 B. Similar to (8), the
measured potential difference ∆ŨP(1) ∈ C (V) can be obtained from (20), viz.,

∆ŨP(1) =
I

2πγ1

(
G+2

M

∑
i=2

KiΓ1|i

)
. (21)

Finally, the 1st-order apparent electrical impedance ZP(1) ∈ C (Ohm) is

ZP(1) := RP(1)+ τXP(1) =
∆ŨP(1)

I
=

1
2πγ1

(
G+2

M

∑
i=2

KiΓ1|i

)
, (22)

where RP(1),XP(1) ∈ R (Ohm) are the 1st-order approximated apparent resistance and
reactance, respectively.

4.4. Apparent electrical impedance sensitivity to changes in tissue electrical properties

Following the same rationale as in Section 3.4, we can find apparent electrical impedance
sensitivity ∆ZP(1)/ZP(1) from (22), namely

∆ZP(1)

ZP(1)
≈


−∆γi

γi

(
1−∑

M
k=2

2ϖi|k
ZP(1)

)
if i = 1

−∆γi
γi

2ϖ1|i
ZP(1) else.

(23)

4.5. Case study 3

Here we consider the case study of a nonhomogeneous tissue with M = 3 domains where
Ω{2,3} are spheres surrounded by tissue Ω1 (see Figure 8 A). Domain Ω{2,3} is centered at
C{2,3} with radius b{2,3} (m), boundary ∂Ω{2,3}. Angle θ{2,3} (rad) is between line segment
|SC{2,3}| and |EC{2,3}| with source S and electrode E on ∂Ω1 : (x,y,0). The 1st-order
approximated electrical potential distribution ŨSP(1)(rE) can be expressed using (20) in ΛP

−,
where the geometrical coefficient KΩi is the same as (11).

Figure 8 B shows the current S± and voltage E± electrodes for impedance measurement
positioned on ∂Ω1. The electrical potential difference, apparent electrical impedance and
apparent impedance sensitivity can be calculated using (21), (22) and (23), where the
geometrical coefficients K{2,3} are the same as (12). If the voltage and current electrodes
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Figure 8. Schematic of case study 3. (A) Nonhomogeneous model ΛP
− ∈ R3

− representing
parallel circuit-like topology consisting of two spherical volumes Ω2 and Ω3 in domain Ω1.
The admittivity and boundary of domain Ωi are γi and ∂Ωi, i ∈ {1,2,3}, with ∂Ω1 := (x,y,0).
Spherical domains Ω{2,3} are centered at C{2,3} with radii b{2,3}. A point-like source S at rS :=
(xS,yS,0) generates electrical current. The point-like electrode E at rE := (xE,yE,0) measures
the electrical potential. Length RSE is the distance between S and E. Angles θ{2,3} are the angle
between the line segment |SC{2,3}| and |EC{2,3}|. (B) Schematic illustrating a surface tetrapolar
electrical impedance measurement. The current source (+) and sink (−) electrodes are S±
and the high (+) and low (−) voltage measuring electrodes are E±. (C) Tetrapolar electrical
impedance measurement for case study 3 with linearly aligned current source electrodes S±
and voltage measuring E± electrodes. C{2,3} satisfies |C{2,3}S+| = |C{2,3}S−|, distance from
C{2,3} to line segment |E+E−| is l{2,3}, angle between l{2,3} and x-axis is θC{2,3} . The distance
between current and voltage electrodes is A, whereas the distance between voltage electrodes
is B.

are linearly aligned on ∂Ω1 and
∣∣C{2,3}S+|= |C{2,3}S−∣∣ as illustrated in Figure 8 C, then

distance l{2,3} (m) is defined from C{2,3} to line segment |E+E−| and angle θC{2,3} (rad) is the
angle between l{2,3} and the x-axis. A and B (m) are the distance between current and voltage
electrodes and between voltage electrodes, respectively. Finally, Ki and G can be simplified
as in (12) and (13).

5. Electrical impedance model in half space with series-parallel circuit-like topology

In this section we consider a nonhomogeneous model ΛSP
− ∈ R3

− consisting of series-parallel
circuit-like topology domains (see Figure 9 A), i.e., the most general case study considered in
here. The model assumptions are the same as in Section 3.

5.1. Governing equation

As in Section 3, the governing equation is

∇ ·
(

γ
SP(r)∇USP(r)

)
=−Iδ (r− rS). (24)

where γSP ∈ C (S m−1) and USP ∈ C (V) are the nonhomogeneous admittivity and the
electrical potential in ΛSP

− , respectively. According to the property of series-parallel circuit-
like topology listed in Table 3, we can explicitly express the admittivity distribution γSP(r)
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Figure 9. (A) Schematic illustrating a nonhomogeneous tissue modeled as series-parallel
circuit-like topology in half space ΛSP

− . There are M non-overlapping domains Ωi, i ∈
{1,2,3, · · · ,M}, with isotropic admittivity γi in ΛSP

− . The planar surface ∂Ω1 := (x,y,0) is
the boundary of Ω1, whereas ∂Ωi are outer boundary of Ωi. Domains Ωi± ∈ N±(Ωi) are the
outer/inner neighbors of Ωi, where i± ∈ {1,2,3, · · · , i− 1, i+ 1, · · · ,M}. A point-like source
S at rS := (xS,yS,0) on ∂Ω1 generates electrical current. Another point-like electrode E
at position rE := (xE,yE,0) is a potential recording electrode on ∂Ω1. Point Qi i 6= 1 has
coordinates rQi := (xQi ,yQi ,zQi) on ∂Ωi, and ni is the outward normal vector of ∂Ωi at Qi.
Length RSE is the distance between S and E. (B) Schematic illustrating a surface tetrapolar
electrical impedance measurement. The current source (+) and sink (−) electrodes are S± and
the high (+) and low (−) voltage measuring electrodes are E± placed on ∂Ω1.

as

γ
SP(r) :=γ1 +

N

∑
i=2

(γi− γi+)H(r+ni). (25)

Also, we have |N+(Ωi)| = 1 from the definition in Table 3. Therefore, the value of i+ is
unique in ΛSP

− . In other words, we can find only one outer neighbor domain Ωi+ enclosing
domain Ωi. Then, the governing equation of series-parallel circuit-like topology is deduced
based on principle of image charges as

∇
2USP(r) =−2Iδ (r− rS)

γSP(r)
−2

M

∑
i=2

Γi+|i

[
δ (∂Ωi)

∂USP(r)
∂ni

·ni +δ (∂Ωi)
∂USP(r)

∂ni
·ni

]
, (26)

where r 6= rS and Γi+|i is the reflection coefficient.

5.2. Electrical potential distribution

Following the same rationale as in (6), the pth-order approximated electrical potential
distribution ŨSP(p)(r) ∈ C (V) is defined

ŨSP(p)(r) :=U0(r)+∑
M
i=2ŨSP(p)

Ωi
(r)

ŨSP(0)(r) :=U0(r)

ŨSP(p)
Ωi

(r) :=
Γi+|i
2π

[∫∫
∂Ωi

∂ŨSP(p−1)(rQi)

∂ni
·ni

d(∂Ωi)

|r−rQi|
+
∫∫

∂Ωi

∂ŨSP(p−1)(rQi
)

∂ni
·ni

d(∂Ωi)∣∣∣r−rQi

∣∣∣
] (27)
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where USP(r) = limp→∞ŨSP(p)(r). Considering a voltage recording electrode E on ∂Ω1 (see
Figure 9 A), we can simplify the 1st-order approximated electrical potential ŨSP(1)(rE) as

ŨSP(1)(rE) =
I

2πγ1

(
1

RSE
+

M

∑
i=2

KΩiΓi+|i

)
. (28)

5.3. Apparent electrical impedance

We consider the surface tetrapolar impedance measurement shown in Figure 9 B. Similar to
(8), the 1st-order approximated potential difference ∆ŨSP(1) ∈ C (V) is

∆ŨSP(1) =
I

2πγ1

(
G+

M

∑
i=2

KiΓi+|i

)
. (29)

Finally, the 1st-order approximated apparent electrical impedance ZSP(1) ∈ C (Ohm) from
(29) is

ZSP(1) := RSP(1)+ τXSP(1) =
∆ŨSP(1)

I
=

1
2πγ1

(
G+

M

∑
i=2

KiΓi+|i

)
, (30)

where RSP(1),XSP(1) ∈ R (Ohm) are the 1st-order approximated apparent resistance and
reactance, respectively.

5.4. Apparent electrical impedance sensitivity to changes in tissue electrical properties

Following the same rationale as in Section 3.4, we can find apparent electrical impedance
sensitivity ∆ZSP(1)/ZSP(1) from (30), namely

∆ZSP(1)

ZSP(1)
≈



−∆γi
γi

[
1−∑i−∈{ j|Ω j∈N−(Ωi)}

ϖi|i−
Z

]
if i = 1

−∆γi
γi

ϖi+|i
Z if i = M

−∆γi
γi

[
ϖi+|i

Z +∑i−∈{ j|Ω j∈N−(Ωi)}
ϖi|i−

Z

]
else.

(31)

5.5. Case study 4

Here we consider the case study of a nonhomogeneous model with M = 4 domains consisting
of two spherical volumes Ω2 and Ω3 within a two-layered tissue Ω1 and Ω4. The model is
defined with Ω1 := 0 < z < h1 and Ω4 : {z > h1}−{Ω2∪Ω3} with boundary ∂Ω1 := (x,y,0)
and ∂Ω4 := (x,y,h1), respectively, and where h1 (m) is the thickness of Ω1. Domains Ω{2,3}
in Ω4 are modeled as spherical volumes with radii b{2,3} (m) and boundaries ∂Ω{2,3} (see
Figure 10 A). Angles θ{2,3} (rad) are defined as the angles between the line segments |SC{2,3}|
and |EC{2,3}| with current source S and voltage electrode E on ∂Ω1.
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Figure 10. Schematic of case study 4. (A) Nonhomogeneous model ΛSP
− ∈ R3

− with series-
parallel circuit-like topology consisting of two-layered domains Ω1 and Ω4 and two spherical
volumes Ω2 and Ω3 in Ω4. The admittivity and boundary of Ωi are γi and ∂Ωi, i ∈ {1,2,3,4},
with ∂Ω1 := (x,y,0) and ∂Ω4 := (x,y,h1). The spherical domains Ω{2,3} are centered at C{2,3}
with radii b{2,3}. A point-like source S at rS := (xS,yS,0) generates electrical current. A point-
like electrode E at rE := (xE,xE,0) measures the electrical potential. Length RSE is the distance
between S and E, angle θ{2,3} is the angle between the line segment |SC{2,3}| and |EC{2,3}|.
(B) Schematic illustrating a surface tetrapolar electrical impedance measurement. The current
source (+) and sink (−) electrodes are S± and the high (+) and low (−) voltage measuring
electrodes are E±. (C) Tetrapolar electrical impedance measurement for case study 4 with
linearly aligned current source electrodes S± and measuring voltage E± electrodes. The center
C{2,3} satisfies |C{2,3}S+| = |C{2,3}S−|. The distance from C{2,3} to line segment |E+E−| is
l{2,3}, the angle between l{2,3} and x-axis is θC{2,3} . The distance between current and voltage
electrodes is A, whereas the distance between voltage electrodes is B.

The 1st-order approximated electrical potential recorded can determined using (28) using
the geometrical coefficients KΩ{2,3} and KΩ4 defined in (11) and (14), respectively. The 1st-
order approximated electrical potential difference, apparent electrical impedance and apparent
impedance sensitivity shown in Figure 10 B can be evaluated using (29), (30) and (31) where
K{2,3} and K4 are the same as in (12) and (15). If the electrodes are linearly aligned on ∂Ω1

and
∣∣C{2,3}S+|= |C{2,3}S−∣∣ (see Figure 10 C), then the distances l{2,3} (m) are defined from

C{2,3} to the line segment |E+E−| and the angles θC{2,3} (rad) are the angles between l{2,3} and
the x-axis. A and B (m) are the distance between current and voltage electrodes and between
voltage electrodes, respectively. Finally, the same simplifications can be made for K{2,3} as in
(12), K4 as in (15), and G as in (13).

6. Extension: Electrical impedance model in full space with series-parallel circuit-like
topology

In this section we extend the framework in Section 5 to full space ΛSP ∈ R3 (see Figure 11
A). This generalization represents the model when the electrodes are not on the surface of the
tissue but surrounded by tissue as for example when using penetrating electrodes. The model
assumptions in Section 3 that apply in full space are (1) to (3).
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Figure 11. (A) Schematic illustrating a nonhomogeneous tissue modeled as series-parallel
circuit-like topology in full space Λ ∈ R3. There are M non-overlapping domains Ω′1 and
Ωi, i ∈ {2,3,4, · · · ,M}, with isotropic admittivity γ1 and γi, respectively. Surface ∂Ωi is
the outer boundary of Ωi. Domains Ωi± ∈ N±(Ωi) are the outer/inner neighbors of Ωi,
where i± ∈ {1,2,3, · · · , i− 1, i+ 1, · · · ,M}. A point-like source S′ at rS′ := (xS′ ,yS′ ,zS′) in
Ω′1 generates electrical current. A point-like electrode E ′ at rE’ := (xE’,yE’,0) measures the
electrical potential. Point Q′i, i 6= 1, is at rQi := (xQi ,yQi ,zQi) on ∂Ωi, and ni is the outward
normal vector of ∂Ωi at Qi. Length RS’E’ is the distance between S′ and E ′. (B) Schematic
illustrating a surface tetrapolar electrical impedance measurement. The current source (+) and
sink (−) electrodes are S′± and the high (+) and low (−) voltage measuring electrodes are E ′±.

6.1. Governing equation

As in Section 3, the governing equations in ΛSP is

∇ ·
(

γ
′SP(r)∇U ′SP(r)

)
=−Iδ (r− rS). (32)

where γ ′SP ∈ C (S m−1) and U ′SP ∈ C (V) are the nonhomogeneous admittivity and the
electrical potential in ΛSP, respectively. The model ΛSP contains domains Ω′1 and Ωi, i 6= 1,
as illustrated in Figure 11 A, where Ω′1 ∪

(⋃
2≤i≤M Ωi

)
= ΛSP. Of note, the admittivity

distribution in ΛSP shares the same definition as that in ΛSP
− in (25), i.e., γ ′SP(r) = γSP(r).

We consider a point-like source S′ at rS′ := (xS′,yS′,zS′) in Ω′1. The governing equation can
be directly deduced from (32), namely

∇
2U ′SP(r) =−Iδ (r− rS′)

γ ′SP −2
M

∑
i=2

Γi+|iδ (∂Ωi)
∂U ′SP(r)

∂ni
·ni. (33)

where r 6= rS′ and reflection coefficient Γi+|i has the same definition as in Section 5.

6.2. Electrical potential distribution

Following the same rationale as in (6), one can obtain the pth-order approximated electrical
potential distribution Ũ ′SP(p)(r) ∈ C (V) in ΛSP as

Ũ ′SP(p)(r) := I
4πγ1|r−rS′|

+∑
M
i=2Ũ ′SP(p)

Ωi
(r)

Ũ ′SP(0)(r) := I
4πγ1|r−rS′|

Ũ ′SP(p)
Ω2

(r) :=
Γi+|i
2π

∫∫
∂Ωi

∂Ũ ′SP(p−1)(rQi)

∂ni
·ni

d(∂Ω2)

|r−rQi|
,

(34)
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where U ′SP(r) = limp→∞Ũ ′SP(p)(r). A point-like electrode E ′ at rE′ := (xE′ ,yE′,zE′) measures
the electrical potential (see Figure 11 A). Then, the 1st-order electrical potential Ũ ′SP(1)(rE′)

can be simplified from (34) as

Ũ ′SP(1)(rE′) =
I

4πγ1

(
1

RS′E′
+

M

∑
i=2

K′Ωi
Γi+|i

)
, (35)

where RS′E′ (m) is the distance between source S′ and electrode E ′, geometrical coefficient
K′

Ωi
(m−1) maintains the same definition as KΩi in (7) replacing S, E with S′, E ′.

6.3. Apparent impedance measurement

We consider a tetrapolar electrical impedance measurement shown in Figure 11 B. The
electrodes of current source (+) and sink (−) are S′± and the measuring electrodes of high
(+) and low (−) potential are E ′±. Similar to (8), we can deduce the 1st-order approximated
potential difference ∆Ũ ′SP(1) ∈ C (V) as

∆Ũ ′SP(1) =
I

4πγ1

(
G′+

M

∑
i=2

K′i Γi+|i

)
, (36)

where geometrical constant G′ := 1/R′++− 1/R′+−+ 1/R′−−− 1/R′−+ (m−1), in which R′wv
(m) is the distance between electrode S′v and E ′w with w,v ∈ {+,−}, geometrical coefficient
K′i (m−1) maintains the same definition as Ki in (8) replacing S, E with S′, E ′. Finally, the
1st-order approximated apparent electrical impedance Z′SP(1) ∈ C (Ohm) from (36) gives

Z′SP(1) := R′SP(1)+ τX ′SP(1) =
∆Ũ ′SP(1)

I
=

1
4πγ1

(
G′+

M

∑
i=2

K′i Γi+|i

)
, (37)

where R′SP(1),X ′SP(1) ∈ R (Ohm) are the 1st-order approximated apparent resistance and
reactance, respectively.

6.4. Apparent electrical impedance sensitivity to changes in tissue electrical properties

Following the same rationale as in Section 3.4, we can find apparent electrical impedance
sensitivity ∆Z′SP(1)/Z′SP(1) from (37), namely

∆Z′SP(1)

Z′SP(1)
≈



−∆γi
γi

[
1−∑i−∈{ j|Ω j∈N−(Ωi)}

ϖ ′
i|i−

Z′SP(1)

]
if i = 1

−∆γi
γi

ϖ ′
i+|i

Z′SP(1) if i = M

−∆γi
γi

[
ϖ ′

i+|i
Z +∑i−∈{ j|Ω j∈N−(Ωi)}

ϖ ′
i|i−

Z′SP(1)

]
else.

(38)

where ϖ ′j|i (Ohm) maintains the same definition as ϖ j|i in (10) replacing the geometrical
coefficient Ki in half space with K′i in full space.
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Table 2. Finite element model simulation settings shown in Figure 12.
Symbol Unit Case study 1 Case study 2 Case study 3 Case study 4 & 5

I mA 1 1 1 1
ω · (2π)−1 kHz 50 50 50 50

A mm 3 3 3 3
B mm 8 8 8 8
l2 mm [6,14] - [6,14] [6,14]
l3 mm [6,14] - 7 {7,8,10}
b2 mm [2,6] - [2,6] [2,6]
b3 mm [1,5] - 4 {2,3,4}
θC2

◦ - - [40,60] [40,60]
⋃
{70}

θC3
◦ - - 45 {45,70}

h1 mm - [1,5] - [1,5]
h2 mm - [1,5] - -
σ1 S m−1 1 1 1
σ2 S m−1 [0.5,1.5] [0.5,1.5] [0.5,1.5] [0.5,1.5]
σ3 S m−1 [0.5,1.5] [0.5,1.5] [0.5,1.5] [0.5,1.5]
σ4 S m−1 - - - [0.5,1.5]

εr1 (×105) - 1 1 1 1
εr2 (×105) - [0.5,1.5] [0.5,1.5] [0.5,1.5] [0.5,1.5]
εr3 (×105) - [0.5,1.5] [0.5,1.5] [0.5,1.5] [0.5,1.5]
εr4 (×105) - - - - [0.5,1.5]

6.5. Case study 5

Here we consider the case study of nonhomogeneous tissue with M = 4 domains consisting
of two spherical volumes Ω2 and Ω3 within two half-space tissue Ω′1 and Ω4. Of note,
all the geometrical configurations of case study 5 are modeled the same as case study 4
(see Figure 10) except Ω1 in ΛSP

− is extended to Ω′1 := z > h1 in ΛSP. The source (+) and
sink (−) current source and high (+) and low (−) potential recording electrodes are S′± and
E ′±, respectively. The 1st-order approximation of the electrical potential Ũ ′SP(1), electrical
potential difference ∆Ũ ′SP(1), apparent electrical impedance Z′SP(1) and apparent impedance
sensitivity ∆Z′SP(1)/Z′SP(1) can be formulated by (35), (36), (37) and (38), respectively, where
the geometrical parameters K′

Ω{2,3}
, K′{2,3}, G′, K′

Ω4
and K′4 keep the same expressions as in

(11), (12), (13), (14) and (15) replacing S, E with S′, E ′.

7. Materials and methods

We confirm the accuracy of our theoretical framework through numerical (MATLAB, The
Mathworks, Natick, MA, USA) and finite element model (FEM, Comsol Multiphysics,
Comsol, Inc., Burlington, MA, USA) simulations. The model simulation settings are
summarized in Table 2. In the model, geometrical parameters l2, b2, b3, θC2 , h1, h2 and
electrical property parameters σ2, σ3, εr2, εr2 are variables in our simulations. Additional
FEM simulation parameters are provided next.

7.1. Finite element model simulations

Figure 12 illustrates the three-dimensional FEM models developed to validate our theoretical
framework. For the simulations of case study 1 (Figure 12 A) and case study 3 (Figure
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12 B), the domain Ω1 is modeled as a cuboid with dimensions width × length × height
140× 140× 100 mm. For the simulations of case study 2 (Figure 12 C), Ω1 and Ω2 are
modeled as cuboids with dimensions 140× 140× h1 mm and 140× 140× h2 mm, whereas
Ω3 has dimensions 140× 140× (100− h1) mm. For the simulations of case study 4 (Figure
12 D) and case study 5 (Figure 12 E), the domain Ω4 is modeled as a cuboid with dimensions
width × length × height 140× 140× (100− h1) mm, where as the domains Ω1 and Ω′1
are modeled as cuboids with dimensions width × length × height 140× 140× h1 mm and
140× 140× (100+ h1) mm, respectively. The dimensions of the domain satisfy simulation
results are not affected by the domain boundary, in other words, the domain can be considered
half space and full space. Adaptive mesh is used to ensure simulation accuracy by having a
finer spatial mesh resolution near the electrodes and boundary between domains, while being
a coarser mesh spatial resolution elsewhere. The minimum mesh element size is 10−4 mm,
the maximum element growth rate is 1.2 and the curvature factor is 0.2. The total elements
for the model of cases 1, 2, 3 are 192,108; 1,654,653 and 206,945, respectively, whereas for
case 4 and 5 are 1,174,848 and 353,545, respectively. BiCGStab solver is used to run the
simulations and the relative tolerance is set as 0.001.

7.2. Apparent electrical impedance

The 1st-rder approximated apparent impedance is computed in Matlab for series, parallel,
series-parallel circuit-like topology in half space and full space using (9), (22), (30) and (37).
Since the 1st-order approximated electrical potential depends on the reflection coefficient
between domains with different admittivity properties, we evaluate the accuracy of our
predictions to changes in the conductivity and (relative) permittivity properties defined as
δσi := (σi−σ1)/σ1 and δεi := (εi− ε1)/ε1, respectively. Finally, the relative error between
the theoretical and FEM simulated apparent resistance and reactance results is calculated as
eR := (RTheory−RFEM)/RFEM and eX := (XTheory−XFEM)/XFEM, respectively.

8. Simulation results

8.1. Apparent electrical impedance of series topology

Figures 13 (A, B and C) and 14 (A and B) compare the 1st-order approximated numerical and
FEM-simulated apparent impedance for case study 1 and case study 2, respectively. Figures
13 (D, E, F and G) and 14 (C, D, E and F) plot the relative error distribution of apparent
resistance and reactance values varying the conductivity and relative permittivity properties
of tissue from -50% to 50% while keeping the rest of model parameters constant.

Overall, theoretical and FEM-simulated results are in good agreement with varying
depth of spherical center from 6 to 14 mm in case study 1 (Figure 13 A); the 1st-order
approximation also being able to detect spherical changes shown in Figure 13 B and C. In
addition, impedance results for case study 2 shown in Figure 14 A, B are in good agreement
changing the tissue thickness from 1 to 5 mm. The accuracy of the 1st-order approximated
apparent resistance (Figure 13 D, F) and reactance (Figure 13 E, G) predictions for case study
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Figure 12. Three-dimensional views of the finite element models (FEM) developed to validate
the accuracy of our theoretical impedance framework of nonhomogeneous tissue considering:
(A), case study 1 in half space with series circuit-like topology; (B), case study 3 in half
space with parallel circuit-like topology; (C), case study 2 in half space with series circuit-
like topology; case study 4 and case study 5 with series-parallel circuit-like topology in half
space (D) and full space (E). The current source (+) and sink (−) electrodes are S±, S′±
and the high (+) and low (−) potential recording electrodes E±, E ′± measure the apparent
electrical impedance. We refer the reader to Table 2 for additional model setting parameters.

1 are < 1.5% and < 5%, respectively. For case study 2, the maximum error is < 2% for
resistance (Figure 14 C and E) and < 4% for reactance (Figure 14 D and F).

8.2. Apparent electrical impedance of parallel topology

Figure 15 compares the 1st-order approximated numerical and FEM-simulated apparent
impedance for case study 3. The results show the theoretical framework can accurately model
changes in position and size of the spherical domain (Figure 15 A, B, C). The maximum
error of apparent resistance and reactance to changes in conductivity and relative permittivity
properties are < 0.1% and < 0.5%, respectively (Figure 15 D, E). Interestingly, if the
dimension of the spherical volume and the relative distance from the spherical domain to
current sources and voltage electrodes are kept constant (see Figure 15 C), then changing the
azimuth angle of the spherical volume has no influence on the apparent impedance.



A framework for modeling bioimpedance measurements of nonhomogeneous tissues 23

A

 R
ea

ct
an

ce
 (O

hm
s)

Distance l{2,3} (mm)

B

C

0 2 4 6
-20.2

-19.9

-19.6

-19.3

 
R

es
is

ta
nc

e 
(O

hm
s)

R
es

is
ta

nc
e 

(O
hm

s)

R
ea

ct
an

ce
 (O

hm
s)

R
ea

ct
an

ce
 (O

hm
s)

Radius b2 (mm)

Radius b3 (mm)

69.6

70.5

71.4

72.3

R
es

is
ta

nc
e 

(O
hm

s)

Theory resistance

 FEM resistance
 

 FEM reactance

Theory reactance

0-4 4

Relative error (%)

Resistance Reactance

-50 0 50
-50

0

50

Permittivity relative change de2 (%)

C
on

du
ct

iv
ity

 re
la

tiv
e 

ch
an

ge
 d

s 2
 (%

)

D

-50 0 50
-50

0

50

Permittivity relative change de2 (%)

C
on

du
ct

iv
ity

 re
la

tiv
e 

ch
an

ge
 d

s 2
 (%

)

E

-50 0 50
-50

0

50

Permittivity relative change de3 (%)

C
on

du
ct

iv
ity

 re
la

tiv
e 

ch
an

ge
 d

s 3
 (%

)

F

-50 0 50
-50

0

50

Permittivity relative change de3 (%)

C
on

du
ct

iv
ity

 re
la

tiv
e 

ch
an

ge
 d

s 3
 (%

)

GResistance Reactance

4 8 12 16
69.6

70.5

71.4

72.3

-20.2

-19.9

-19.6

-19.3

1 3 5 7
69.6

70.5

71.4

72.3

-20.2

-19.9

-19.6

-19.3

-0.2%

-0.2%

-0.4%

-0.4%

-0.6%

-0.6%

-0.6%

-0.2%

0.2%

0.6%
1.0%

4.0%3.5%

-2.0%

3.0%
2.5%

-1.5%

2.0%

1.5%

-1.0%

-0.6%

-0.2%
0.2%

0.6%

1.0%

-2 2

Figure 13. Analytical and FEM-simulated impedance results of case study 1 (see Figure 5
C and Figure 12 A). Theoretical (solid line) and FEM-simulated (dotted line) resistance and
reactance with l{2,3} = [6,14] mm, b2 = 4 mm and b3 = 3 mm (A); b2 = [2,6] mm, l{2,3} = 7
mm and b3 = 1 mm (B); b3 = [1,5] mm, l{2,3} = 7 mm and b2 = 6 mm (C). Additional
simulation setting parameters: σ1 = 1S m−1, εr2 = 1×105 (dimensionless), σ2 = 1.1S m−1,
εr2 = 1.1× 105 (dimensionless), σ3 = 0.9S m−1, εr3 = 0.9× 105 (dimensionless). (D, E)
Relative resistance and reactance errors changing the admittivity of domain Ω2 (i.e., δσ2 and
δε2 ) with σ3 = 1.1S m−1, εr3 = 0.9× 105 (dimensionless). (F, G) Relative resistance and
reactance errors changing the admittivity of domain Ω3 (i.e, δσ3 , δε3 ) with σ2 = 1.1S m−1,
εr2 = 0.9× 105 (dimensionless). Additional simulation setting parameters: σ1 = 1S m−1,
εr2 = 1×105 (dimensionless), l{2,3} = 9 mm, b2 = 6 mm, b3 = 5 mm.
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Figure 14. Analytical and FEM-simulated impedance results of case study 2 (see Figure 6
C and Figure 12 C). Theoretical (solid line) and FEM-simulated (dotted line) resistance and
reactance with h1 = [1,5] mm, h2 = 1 mm (A); h1 = 1 mm, h2 = [1,5] mm (B). Additional
simulation parameters: σ1 = 1S m−1, εr2 = 1× 105 (dimensionless), σ2 = 1.1S m−1, εr2 =

1.1× 105 (dimensionless), σ3 = 0.9S m−1, εr3 = 0.9× 105 (dimensionless). (C, D) Relative
resistance and reactance errors changing the admittivity of domain Ω2 (i.e, δσ2 , δε2 ) with
σ3 = 1.1S m−1, εr3 = 0.9× 105 (dimensionless). (E, F) Relative resistance and reactance
errors changing the admittivity of domain Ω3 (i.e, δσ3 , δε3 ) with σ2 = 1.1S m−1, εr2 =

0.9× 105 (dimensionless). Additional simulation parameters: σ1 = 1S m−1, εr2 = 1× 105

(dimensionless), h1 = 2 mm, h2 = 2 mm.
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Figure 15. Analytical and FEM-simulated impedance results of case study 3 (see Figure
8 C and Figure 12 B). Theoretical (solid line) and FEM-simulated (dotted line) resistance
and reactance with l2 = [6,14] mm, l3 = 7 mm, b{2,3} = 4 mm, θC{2,3} = 45 degrees (A);
b2 = [2,6] mm, b3 = 4 mm, l{2,3} = 7 mm, θC{2,3} = 45 degrees (B); θC2 = [40◦,60◦],
θC3 = 45◦, l{2,3} = 7 mm, b{2,3} = 4 mm (C). Additional simulation setting parameters:
σ1 = 1S m−1, εr2 = 1×105 (dimensionless), σ2 = 1.1S m−1, εr2 = 1.1×105 (dimensionless),
σ3 = 0.9S m−1, εr3 = 0.9× 105 (dimensionless). (D, E) Relative resistance and reactance
errors changing the admittivity of domain Ω2 (i.e, δσ2 , δε2 ) with σ1 = 1S m−1, εr2 = 1×105

(dimensionless), σ3 = 1.1S m−1, εr3 = 0.9×105 (dimensionless), l{2,3} = 7 mm, b2 = 4 mm,
θC{2,3} = 45◦.

8.3. Apparent electrical impedance of series-parallel topology

Figures 16 and 17 compare the 1st-order approximated numerical and FEM-simulated
apparent impedance for case study 4 in half space and case study 5 in full space, respectively.
In both half and full space, there is good agreement with varying thickness (Figure 16 A
and Figure 17 A), dimensions of the spherical domains (Figure 16 B and Figure 17 B), and
relative distance to the spherical center (Figure 16 C and Figure 17 C). Figure 16 D and
Figure 17 D reveal that the azimuth angle of the spherical volume does not contribute to the
apparent impedance. The maximum errors changing the conductivity and relative permittivity
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Figure 16. Analytical and FEM-simulated impedance results of case study 4 (see Figure 10
C and Figure 12 D). Theoretical (solid line) and FEM-simulated (dotted line) resistance and
reactance with h1 = [1,5] mm, l{2,3} = 8 mm, b{2,3} = 2 mm, θC{2,3} = 70◦ (A); b2 = [2,6] mm,
b3 = 4 mm, l{2,3}= 10 mm, θC{2,3} = 45◦ (B); l2 = [6,14] mm , l3 = 7 mm, h1 = 1 mm, b{2,3}=
3 mm, θC{2,3} = 45◦ (C); θC2 = [40◦,60◦], θC3 = 45◦, l{2,3} = 7 mm, b{2,3} = 3 mm (D).
Additional simulation setting parameters: σ1 = 1S m−1, εr2 = 1×105 (dimensionless), σ2 =

1.1S m−1, εr2 = 1.1×105 (dimensionless), σ3 = 0.9 S m−1, εr3 = 0.9×105 (dimensionless),
σ4 = 0.95S m−1, εr4 = 1.05× 105 (dimensionless). Relative resistance and reactance errors
changing the admittivity of domain Ω{2,3} (i.e, δσ2,3 = δσ2 = δσ3 , δε2,3 = δε2 = δε3 ) (E, F)
with σ4 = 1.1S m−1, εr4 = 0.9× 105 (dimensionless). Relative resistance and reactance
errors changing the admittivity of domain Ω4 (i.e, δσ4 , δε4 ) (G, H) with σ{2,3} = 1.1S m−1,
ε{r2,r3} = 0.9×105 (dimensionless). Additional simulation setting parameters: σ1 = 1S m−1,
εr2 = 1×105 (dimensionless), h1 = 2 mm, l{2,3} = 8 mm, b{2,3} = 3 mm, θC{2,3} = 45◦.
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Figure 17. Analytical and FEM-simulated impedance results of case study 5 (see Figure 12
E). Theoretical (solid line) and FEM-simulated (dotted line) resistance and reactance with
h1 = [1,5] mm, l{2,3} = 8 mm, b{2,3} = 2 mm, θC{2,3} = 70◦ (A); b2 = [2,6] mm, b3 = 4
mm, l{2,3} = 10 mm, θC{2,3} = 45◦ (B); l2 = [6,14] mm , l3 = 7 mm, h1 = 1 mm, b{2,3} = 3
mm, θC{2,3} = 45◦ (C); θC2 = [40◦,60◦], θC3 = 45◦, l{2,3} = 7 mm, b{2,3} = 3 mm (D).
Additional simulation setting parameters: σ1 = 1S m−1, εr2 = 1×105 (dimensionless), σ2 =

1.1S m−1, εr2 = 1.1×105 (dimensionless), σ3 = 0.9 S m−1, εr3 = 0.9×105 (dimensionless),
σ4 = 0.95S m−1, εr4 = 1.05× 105 (dimensionless). Relative resistance and reactance errors
changing the admittivity of domain Ω{2,3} (i.e, δσ2,3 = δσ2 = δσ3 , δε2,3 = δε2 = δε3 ) (E, F)
with σ4 = 1.1S m−1, εr4 = 0.9× 105 (dimensionless). Relative resistance and reactance
errors changing the admittivity of domain Ω4 (i.e, δσ4 , δε4 ) (G, H) with σ{2,3} = 1.1S m−1,
ε{r2,r3} = 0.9×105 (dimensionless). Additional simulation setting parameters: σ1 = 1S m−1,
εr2 = 1×105 (dimensionless), h1 = 2 mm, l{2,3} = 8 mm, b{2,3} = 3 mm, θC{2,3} = 45◦.
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properties of spherical volumes are < 0.5% for case study 4 (Figure 16 E, F) and ≤ 0.2%
for case study 5 (Figure 17 E, F). If we consider changes in the conductivity and relative
permittivity properties of the two-layered tissues, then the maximum errors are < 8% for case
study 4 (Figure 16 G, H) and < 0.08% for case study 5 (Figure 17 G, H). We note that case
study 5 in full space has better model accuracy than half-space in case study 4.

9. Discussion

9.1. Nonhomogeneous multi-domain and isotropic framework in half and full space

This paper proposes a novel physics-driven framework for modeling electrical bioimpedance
measurements of nonhomogeneous tissue considering both conductivity and relative
permittivity properties of tissues along with their frequency dependence. Our theoretical
framework can be used to model both surface and needle measurement of nonhomogeneous
tissue with arbitrary shape considering series, parallel, and series-parallel circuit-like
topologies. In these topologies, we first determine the electrical potential distribution within
the model, the (approximated) apparent impedance and finally its sensitivity to changes in
tissue electrical properties. For each topology, we confirm the usefulness of our framework
performing numerical and FEM simulations considering up to 5 case studies. In summary,
the simulation results reveal a maximum resistance and reactance error of < 4% and < 8%,
respectively.

9.2. Comparison to previous literature
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To put the novelty and contribution of our work in context, we provide in Table 3 a review
of studies published in the literature where the authors developed theoretical frameworks
for modeling nonhomogeneous media. Table 3 shows that a large number of studies were
developed to determine the electrical potential measured caused by transmembrane current,
e.g, due to membrane depolarization (Clark & Plonsey 1966, Clark & Plonsey 1968, Clark &
Plonsey 1970). These studies focused on modeling the propagation of the electrical potential
generated for example in a cylindrical nerve cell, and propagated through the surrounding bulk
of (anisotropic) muscle, subcutaneous fat and skin and then finally recorded with a distant
electrode from the source (Altman & Plonsey 1988, Altman & Plonsey 1990). These studies
were essential to understand the low-pass frequency filtering effects affecting the morphology
of extracellular potentials introduced by intermediate tissue between the source of current and
a distant voltage recording electrode. Subsequently, the number of domains considered is
not more than 4 with cylindrical geometry in order to model the anatomical shape of a limb
for example. Although not related to physiological measurement, a review of the literature
would be incomplete without including nonhomogeneous models developed in the field of
geophysical surveying for soil determination. In this particular application, models developed
were primarily based on soil resistivity for applications including ore detection (Lytle 1982).

It is also worth noting that in most studies, regardless of the directionality of electrical
properties, the only conduction effect considered is purely ohmic through the resistivity (or
its inverse, the conductivity, if the relative permittivity is ignored). To the best of the authors’
knowledge, we are only aware of one previous study where the authors considered both
the conductivity and the relative permittivity (i.e., the admittivity) in the propagation of the
electrical potential in a cylindrical domain (Joshi & Song 2010), however, our framework is
more general in the sense that it can model any parameterizable geometry. By considering
the admittivity, we not only provide an approximated analytical expression of the electric
potential but also an approximate analytical expression for the apparent impedance including
the imaginary part (i.e., the reactance). Compared to existing literature, our framework is
general enough to model an arbitrary number of domains. This may help to get insight not
currently available in emerging bioimpedance applications in which there is not a cylindrical
tissue geometry, for example, a localized bioimpedance measure of pulsatile blood flow on
the wrist (Kusche et al. 2018) or neck (Shen et al. 2019) for the next generation of wearable
devices.

Unlike studies where the authors solved the Poission’ equation considering a specific
nonhomogeneous geometry (Lee 1975, Altman & Plonsey 1990), the gist of our approach to
solve a generic nonhomogeneous topology lies in using an iterative approximation strategy.
In doing so, we were able to obtain a general bioimpedance expression for nonhomogeneous
tissue separating the contribution of the domains’ electrical property, the electrodes geometry,
and domain geometry. This allowed us to provide an analytical expression for the sensitivity
to electrical changes in individual domains within the nonhomogeneous tissue, which has
not been done before. This is especially relevant because it allows the user to predict
the impedance change due to a change in internal conductivity in one of the domains
within the nonhomogeneous tissue. Finally, our modeling approach allowed us to interpret
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Figure 18. Flow diagram showing the approaches available for model bioimpedance. In this
work we have followed steps 1 to 6.

nonhomogeneous tissue with electrical circuit equivalents such as series, parallel and series-
parallel, introducing a novel theoretical concept that also has never been applied before and
which raises further questions, discussed below.

9.3. Comparison to other bioimpedance modeling approaches

There exist three modeling approaches to interpret nonhomogeneous bioimpedance illustrated
in Figure 18: physics-driven models, computational models and equivalent electrical circuit
models. Unlike FEM only and circuit-based approaches, the theoretical approach presented
provides a general and structured framework to describe macroscopically nonhomogeneous
bioimpedance measurement directly relating electrodes, domain and tissue electrical
properties. As any theoretical study, assumptions are necessary to solve the governing
equations analytically such as considering the domain (semi-)infinite. FEM modeling
approaches would be helpful to further investigate the accuracy of our theoretical predictions
when these assumptions are not met, for example, modeling a finite-shape domain. Modeling
bioimpedance using equivalent circuits is, compared to our approach and FEM methods,
fundamentally different. In this case, data is described by empirical circuits which is valuable
for simplifying the complex nature originating bioimpedance data using a circuital parameter
of interest.
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Figure 19. (A) Schematic representing the nonhomogeneous tissue with intersecting domains
Ωi, i ∈ {1, · · · ,5}. (B) Schematic illustrating a nonhomogeneous impedance measurement
with current and voltage electrodes in different domains. The outer two electrodes are the high
(source) and low (sink) current electrodes, whereas the inner electrodes are the high and low
potential recording electrodes.

9.4. Limitations

This study has important limitations that are worth highlighting. First, modeling
nonhomogeneous tissue with series, parallel and series-parallel circuit-like topologies is a
simplification that does not describe all possible nonhomogeneities. Albeit general, it cannot
model a nonhomogeneous tissue consisting of the intersection between different domains
shown in Figure 19 A. Second, the electrodes are assumed to be in contact with just one
(i.e., the same) domain within the nonhomogeneous tissue. Further research is necessary to
extend the framework to model an arbitrary positioning of the electrodes in different domains
with different admittivity properties or even on the boundary between domains (Figure 19 B).
Third, the framework is developed assuming the electrodes are placed on a planar surface.
This might not be possible to achieve in practice, especially in curved surfaces such as
the wrist. Fourth, we considered all domains to have isotropic admittivity properties. In
tissues like skeletal muscle, the admittivity has different values along and perpendicular to
the muscle fiber, a concept known as electrical anisotropy (Kwon, Guasch, Nagy, Rutkove
& Sanchez 2019). Fifth, the framework was developed considering point-like source and
electrodes, a more realistic approach would required to consider their finite-size.

9.5. Future directions

We foresee three different future directions stemming from the current work:

(i) Extend the forward framework to model a nonhomogeneous tissue with intersecting
domains, arbitrary electrode positioning, anisotropic electrical properties, and finite-size
electrodes geometry.

(ii) Develop inverse models to estimate the electrical properties from nonhomogeneous
tissue bioimpedance measurements.

(iii) Apply the framework to model non-invasive and penetrating needle bioimpedance
measurements of nonhomogeneous tissues. Two examples are surface electrical
impedance myography applications to model the effect of intermediate tissues such as
the skin and subcutaneous fat tissues affecting muscle readings, and wearable impedance
cardiography measurements to disentangle the source of electrical conductivity



A framework for modeling bioimpedance measurements of nonhomogeneous tissues 33

originating changes in thoracic bioimpedance measurements.

10. Conclusions

Our work provides new scientific insight to model bioimpedance measurements of
nonhomogeneous tissues. This framework might find use for interpreting bioimpedance
measurements in multi-domain nonhomogeneous tissues with arbitrary boundary surfaces in
half and full space considering both the conductivity and the relative permittivity properties.
Simple analytical expressions validated by FEM simulations are also provided for 5 particular
case studies considering spherical and multi-layer tissues. Ultimately, this knowledge
will help to aid the development of more accurate bioimpedance devices and shed light
on the interpretation of bioimpedance results in a multitude of health-related moniitoring
applications.
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1 Lemma 1.
If ∂Ωi is a spherical surface centered at Ci with radius bi in R3, Qi is an arbitrary point
on ∂Ωi, ni is the outward normal vector at Qi, S and E are arbitrary points outside the
sphere as shown in Figure A1, then

− 1
2π

∫∫
∂Ωi

∂RSQi(rQi)

∂ni
·ni

d(∂Ωi)

R2
SQi

(rQi)REQi(rQi)

=
1
bi

∞

∑
n=0

2n
2n+1

(
b2

i
RECiRSCi

)n+1

Pn(cosθi).

(A1)

Proof. To calculate the surface integrals in (A1) we build an auxiliary model of charged
spherical shell in vacuum that allows us to find the solution indirectly. Let’s start estab-
lishing a spherical coordinates in R3 originated at the center Ci of the spherical surface
∂Ωi (see Figure A1). The position r := (r,θ ,ϕ) is an arbitrary defined in spherical
coordinates. For convenience, we consider S with coordinates rS := (RSCi ,0,0) on the
z-axis, while E is defined with coordinates rE := (RECi ,θi,0), while Qi with coordi-
nates rQi := (bi,θQi ,ϕQi) is an arbitrary point on ∂Ωi. RSCi is the distance between S
and Ci; RECi is the distance between E and Ci; RSQi is the distance between S and Qi;
REQi is the distance between E and Qi; θi is the angle between line segment |SCi| and
|ECi|; θQi is the angle between line segment |QiCi| and |SCi|. Next, we introduce a
charge density function q(rQi) ∈ R (C m−2) on the spherical surface ∂Ωi, defined as

q(rQi) :=
∂RSQi(rQi)

∂ni
·ni

1
R2

SQi
(rQi)

.

Then the potential distribution U(r) caused by Qi can be expressed as

U(r) =
1

4πε0

∫∫
∂Ωi

∂RSQi(rQi)

∂ni
·ni

1
R2

SQi
(rQi)

d(∂Ωi)∣∣r− rQi

∣∣ . (A2)

According to the axial symmetry, U has no dependence on the azimuthal angle ϕ .
Then applying separation of variables to Poission’s equation, the general solution for
potential distribution U(r) in spherical coordinates satisfies that

U(r) =
∞

∑
n=0

(
Anrn +

Bn

rn+1

)
Pn(cosθ), (A3)

where An and Bn are a series of constants and Pn(x) are Legendre polynomials.

1
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Figure A1: Auxiliary model of charged spherical shell in vacuum. A nonuniform
charged spherical shell ∂Ωi is centered at the origin of spherical coordinates (r,θ ,ϕ)
in infinity vacuum R3with bi the radius of ∂Ωi. The position Qi has coordinates rQi :=
(bi,θQi ,ϕQi) on ∂Ωi. The charge density q(rQi) is distributed on surface ∂Ωi. The
position S, E and E ′ have coordinates rS := (RSCi ,0,0), rE := (RECi ,θi,0) and rE′ :=
(RECi ,0,0) outside the sphere, which satisfy |ECi|= |E ′C| and S, E ′ are on z-axis. The
angle θi is defined between line segment |SCi| and |ECi|; θQi is the angle between line
segment |SCi| and |QiCi|.

In this model, an auxiliary point E ′ with coordinates rE := (RECi ,0,0) is introduced
to solve the surface integral (A2) indirectly, which satisfy |E ′Ci| = |ECi| and E ′ is on
z-axis. From (A3), the potential at E ′ can be written as

U (rE′) =
∞

∑
n=0

(
AnRn

ECi
+

Bn

Rn+1
ECi

)
. (A4)

From (A2), V (rE′) can also be expressed as

U (rE′) =
1

4πε0

∫
π

−π

∫
π

0

∂RSQi(rQi)

∂bi

b2
i sinθQidθQidϕQi

R2
SQi

(rQi)RQiE′(rQi)
, (A5)

where
RSQi(rQi) =

√
R2

SCi
+b2

i −2biRSCi cosθQi

and
RQiE′(rQi) =

√
R2

ECi
+b2

i −2biRECi cosθQi .

Equation (A5) can be further simplified as

U (rE′) =
1

4ε0

[
2bi

b2
i −RECiRSCi

+
1√

RECiRSCi

ln

(√
RECiRSCi +bi√
RECiRSCi −bi

)]
. (A6)
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From the geometry of the model, we have that bi√
RECi RSCi

< 1. According to Taylor

series we have
ln
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RECi RSCi+bi√
RECi RSCi−bi

)
= ∑

∞
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1
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i

R
n
2
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n
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∞
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b2n
i

Rn
ECi

Rn
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(A7)

Substituting (A7) into (A6) gives

U (rE′) =−
1

biε0

∞

∑
n=0

n
2n+1

(
b2

i
RECiRSCi

)n+1

. (A8)

Comparing (A8) and (A4), we haveAn = 0

Bn =− 1
ε0

nb2n+1
i

(2n+1)Rn+1
SCi

.
(A9)

Substituting (A9) to (A3) gives

U(r) =− 1
ε0

∞

∑
n=0

nb2n+1
i

(2n+1)Rn+1
SCi

1
rn+1 Pn(cosθ). (A10)

Then the potential at E is

U(rE) =−
1

biε0

∞

∑
n=0

n
2n+1

(
b2

i
RECiRSCi

)n+1

Pn(cosθi). (A11)

According to (A2), U(rE) can also be written as

U(rE) =
1

4πε0

∫∫
∂Ωi

∂RSQi(rQi)

∂ni
·ni

d(∂Ωi)

R2
SQi

(rQi)REQi(rQi)
. (A12)

One can find (A1) equating the right hand sides of (A11) and (A12).

2 Lemma 2.
If ∂Ωi is an infinity plane in R3, Qi is an arbitrary point on ∂Ωi and S, E are arbitrary
points share the same distance Ni to plane ∂Ωi as shown in Figure B1, then

− 1
2π

∫∫
∂Ωi

∂RSQi(rQi)

∂ni
·ni

d(∂Ωi)

R2
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(rQi)REQi(rQi)
=

1√
R2

SE +4N2
i

. (B1)
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Figure B1: Auxiliary model of charged plane ∂Ωi : z=−Ni in vacuum. The position Qi
has coordinates rQi := (x,y,−Ni) is an arbitrary point on the plane. The charge density
q(rQi) is distributed on ∂Ωi. Positions S, E and E ′ have coordinates rS := (0,0,0),
rE := (0,RSE,0) and rE′ := (0,0,RSE) in the vacuum, which satisfy the line segments
|ES|= |E ′S|.

Proof. We follow a similar procedure as we did in Lemma 1. First, we establish a
Cartesian coordinates (x,y,z) in R3 with origin S at rS := (0,0,0). We then place E at
rE := (0,RSE,0) on the y-axis and ∂Ωi as the normal plane of z-axis. The position Qi
is defined with coordinates rQi := (x,y,−Ni) on the plane ∂Ωi : z = −Ni. RSE is the
distance between S and E. Next, we introducing the same charge density distribution
function q(rQi) on the plane ∂Ωi as in Lemma.1. According to (A2), U (rE′) can be
expressed as

U (rE′) =
1

4πε0

∫
∞

−∞

∫
∞

−∞

−
∂RSQi(rQi)

∂Ni

dxdy
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, (B2)

where
RSQi(rQi) =

√
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i

and
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√
x2 + y2 +(RSE +Ni)

2.

Then, (B2) can be simplified as
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Equation (B3) can be rewritten using Taylor series as
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Comparing (B4) with (A3) we haveAn = 0, Bn =− 1
2ε0

(−1)n2nNn
i if 2Ni < RSE

An =− 1
2ε0

(−1)n

2n+1Nn+1
i

, Bn = 0 if 2Ni > RSE.
(B5)

The position rE can also be re-written as (RSE,π/2,0) in spherical coordinates. Sub-
stituting (B5) into (A3) then gives
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Since the Legendre polynomials can be expressed in differential form, namely

Pn(x) =
1

2nn!
dn

dxn

[(
x2−1

)n
]
,

we have that

Pn(0) =

{
(−1)m

22m
(2m)!
(m!)2 for n = 2m

0 for n = 2m+1.
(B7)

From Taylor series we have

1√
1+ x

=
∞

∑
m=0

(−1)m

22m
(2m)!
(m!)2 xm (B8)

when |x|< 1. Substituting (B7) and (B8) into (B6) gives

U (rE) =−
1

2ε0

√
R2

SE +4N2
i

. (B9)

One can find (B1) equating the right hand sides of (B9) with (A12).
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