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Abstract

BACKGROUND: Smart scales, smart watches, and smart rings with bioimpedance technology may create interference

in patients with cardiac implanted electronic devices (CIEDs).

OBJECTIVES: To determine the interference at CIEDs with simulations and benchtop testing, and compare these

results with maximum values defined in the ISO 14117 electromagnetic interference standard for these devices.

METHODS: The interference at pacing electrodes were determined via simulations on a male and a female computable

model. We also performed a benchtop evaluation on representative CIEDs from three different manufacturers as

specified in the ISO 14117 standard.

RESULTS: Simulations showed evidence of interference with voltage values exceeding threshold values defined in the

ISO 14117 standard. The level of interference varied with the frequency and the amplitude of the bioimpedance signal,

and between male and female models. The level of interference generated with smart scale and smart rings simulations

was lower than smart watches. Across device manufacturers, generators demonstrated susceptibility to over-sensing and

pacing inhibition at different signal’s amplitudes and frequencies.

CONCLUSIONS: This study evaluates the safety of smart scales, smart watches, and smart rings with bioimpedance

technology via simulation and testing. Our results indicate that these consumer electronic devices could interfere in

patients with CIEDs. The present findings do not recommend the use of these devices in this population due to potential

interference.

Keywords: Bioimpedance; Electrical interference; Cardioverters; Pacemakers; Smart scales; Smart watches; Smart

rings.
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Introduction

Medical bioimpedance technology until recently only available in hospitals is now quickly spreading into consumer and

wearables devices as companies increasingly incorporate bioimpedance sensing capabilities into their new electronic

products. Driven by the increasing demand of consumers to monitor their own health and the benefits of doing it

continuously outside of the hospital setting, bioimpedance technology is becoming more ubiquitous and examples of

mainstream consumer electronic products commercially available at home include body composition smart scales (e.g.,

Fitbit Aria 2 and Withings Body Scan), smart watches (e.g., Samsung Galaxy Watch 4 and Empatica E4), and smart

rings (e.g., Moodmetric).

The underlying principle of bioimpedance consists of applying via two electrodes an alternating, low amplitude

and painless electrical current and then measuring the resulting voltage generated by the body using a different pair

of electrodes. Changes that occur as a result of disease will alter the ionic and cellular integrity of tissues and fluids,

thus affecting its ability to conduct alternating electrical current, which will ultimately impact the characteristics of

the voltage signal recorded. Sweeping through a frequency range of interest, the voltage-current waveforms are used

to calculate the electrical impedance of the body (i.e., bioimpedance) using Ohm’s law. Simply expressed, that is

impedance equals to voltage divided by current,1 with more conductive regions resulting in lower impedance values and

vice versa.

Biompedance technology is sensitive to fluid changes and two of the most outstanding applications include

bioelectrical impedance analysis (BIA)2, 3 and impedance cardiography (ICG).4–6 Single-frequency BIA devices to

estimate body composition parameters such as total body water typically measure at 50 kiloHertz (kHz) whereas

multi-frequency devices measure a larger number of frequencies in the kHz to MegaHertz (MHz) range. Noninvasive

hemodynamic ICG monitoring is based upon the measurement of thoracic bioimpedance between 50 to 100 kHz.

Beyond BIA and ICG, measuring bioimpedance has shown clinical value in patients with neuromuscular disorders7, 8 as

well as detecting an upcoming edema in the lungs and limbs as an early indicator of worsening heart failure.9–11 Despite

the clinical value, no consumer bioimpedance device has been cleared by the US Food and Drug Administration (FDA)

for subjects with cardiac implanted electronic devices (CIEDs) due to possible electrical interference. For example,

Samsung Galaxy Watch 4, and both the Fitbit Aria 2 and the Withings Body Cardio smart scales, have disclaimers in

their websites preventing from using their devices in subjects with implanted electronic medical devices.

Over the last few years, very few studies dealing with electrical interference of bioimpedance technology on CIEDs

have been published;12, 13 and still to date there is a lack of publicly available benchmark data to close the gap in

knowledge from these observational studies using medical instrumentation about the extent to which CIEDs may be

influenced by bioimpedance technology available in consumer electronic devices.

Here, we evaluate the electrical safety of measuring bioimpedance using technical specifications from the FDA

recognized ISO 14117.14 This standard defines reproducible benchtop test methodologies and voltage threshold values

that manufacturers of CIEDs must use to demonstrate that their devices achieve the appropriate level of electromagnetic

compatibility in uncontrolled electromagnetic environments that patients with these devices might encounter. The

purpose of this study was to determine the level of interference in CIEDs during bioimpedance (1) simulations and (2)
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benchtop testing, using the ISO 14117 standard as a reference.
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Methods

The research reported in this paper does not involve animal or human experimentation and thus did not require

institutional approval nor follow ethical guidelines associated with the use of live vertebrate animals or humans.

Bioimpedance simulations

Simulation settings

Computable human models were simulated in Sim4Life (Zurich Med Tech AG, Zurich, Switzerland). First, the can of

the simulated CIED was placed in the left pectoral region of the human anatomical models. ICD and PPM leads were

then placed into the heart through the cephalic vein with the cathode electrode positioned in the right ventricle apex

while the opposite-end of the lead connected to the ICD/PPM connector (Figure 1 D). For ICD simulations, the distal

shock coil was placed in the right ventricle and the proximal shock coil was located in the superior vena cava.

To evaluate the voltage at the pacing electrodes for unipolar and bipolar pacing, all models were first discretized into

small voxels to equally preserve the geometrical properties of tissues and objects. The total number of voxels varied

between simulations models, with the lowest being 76.5 million voxels for unipolar PPM simulations, and the highest

being 128.5 million voxels for bipolar PPM simulations. Simulations were performed with a workstation consisting of

two processors (Xeon Gold 6226R, Intel, Santa Clara, CA), graphic card (Quadro RTX 6000, NVIDIA, Santa Clara,

CA) and 256 GB of memory.

We chose frequencies representative of use cases of commercial devices with bioimpedance sensing technology.

Smart scale hand-to-foot simulations were performed by applying a sinusoidal current wave of 200 microamperes root

mean square (µArms) with frequency 3, 4, 5, 6, 7, 8, 9, 10, 50, 150 and 1,000 kHz. Wearable smart watch wrist-to-finger

simulations were performed at 5, 15, 20, 100, and 200 kHz applying a sinusoidal voltage wave of amplitude 1 Volt peak

to peak (Vpp). Single-frequency smart ring finger bioimpedance simulations were performed at 10 Hertz (Hz) with a

sinusoidal voltage signal with amplitude of 1 Vpp using the inner electrodes of the ring to model the electrodermal

activity (EDA) measurement.

Altogether, we ran 224 simulations for a total simulation time of 3,200 hours, which included 176 smart scale

simulations (11 frequencies × 2 left/right side × 4 configurations × 2 male/female model), 40 smart watch simulations

(5 frequencies × 4 configurations × 2 male/female model), and 8 smart ring simulations (1 frequency × 4 configurations

× 2 male/female model).

Simulated anatomical human models

We used as computable human phantoms the Virtual Family whole-body anatomical male models Fats version 3

(male, age 37 years, height 1.82 meters, weight 120 kilograms, body mass index 36.2 kilogram meter-2) and female

morphed Ella version 3 (female, age 26 years, height 1.63 meters, weight 79.7 kilograms, body mass index 30 kilogram

meter-2).15 These models provide representative values of individuals with overweight or obesity at risk of heart disease

and were originally developed for electromagnetic and medical device safety evaluations. These models include more

than 120 anatomical features and more than 300 tissues altogether. Electrical properties of the anatomical tissues and

fluids were taken from the IT’IS low-frequency 4.0 database (IT’IS Foundation, Zurich, Switzerland) at the range of
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frequencies simulated.

For hand-to-foot smart scale simulations (Figure 1 A), we posed the models and aligned the heels in the feet

electrodes with the center of the electrodes evenly distributed on the surface of the heels while the fingers were

positioned flat on the hand electrodes. Hand and foot current electrodes were modeled with surface areas of 31.9 and

106.7 centimeters square (cm2), respectively. For wrist-to-finger smart watch simulations, we posed the models wearing

B-Secur’s (Belfast, UK) HeartKey Test Watch below the left wrist bone, a watch developed to acquire simultaneous

electrocardiography and BIA measurements. The current source electrode (1.56 cm2) was positioned in the caseback of

the watch in contact with the dorsum of the wrist while the current sink electrode (1.69 cm2) was positioned on the case

to allow index-finger contact (Figure 1 B). We simulated an electrodermal activity measurement placing a smart ring

on the left fourth digit. The smart ring inner current electrodes had dimensions of 7 by 7 millimeters (mm) with and

edge-to-edge distance of 4 mm (Figure 1 C).

Simulated implantable cardioverter defibrillator, permanent cardiac pacemaker, and leads

Supplementary Table 1 provides a comparison of the mechanical dimensions of commercially available permanent

pacemakers (PPMs) and implantable cardioverter-defibrillators (ICDs) versus our simulations (see Figure 1 D). For the

simulations, we assigned the electrical material property of an ideal conductor for the metal outer shell of the can and

polyurethane for the connector.

We designed a dual-coil ICD lead based on Reliant 4-FRONT lead specifications (Boston Scientific, Marlborough,

MA) shown in Figure 1 D. The dimensions are length 62.7 and 61.4 centimeters (cm) for Fats and morphed Ella models,

respectively. On both models, the ICD lead diameter was 2.6 mm with annular cathode electrode length 3 mm. The

spacing between pacing electrodes was 1 cm with the anode ring electrode length 3 mm. The spacing between the

cathode and the distal shock electrode was 1 cm. The length of the distal and proximal shock coils was 5 and 8 cm,

respectively, 0.15 mm in diameter and spaced 10 cm apart.

We designed two different leads for bipolar PPM simulations based on the minimum and maximum spacing between

electrodes from commercially available leads shown in Supplementary Table 2. The leads had the same length as the

ICD lead for Fats and morphed Ella models and the diameter was 2 mm. Pacing electrodes and can were assigned as

ideal metal conductors while polyurethane was assigned to other non-metal parts. The contact impedance between

tissue and electrodes including their frequency behavior and active components (i.e., functioning of CIED) cannot be

simulated with the finite element method.

Benchtop bioimpedance testing

To evaluate a bioimpedance hardware system equivalent to our simulation study, we connected an impedance analyzer

MFIA (Zurich Instruments, Zurich, Switzerland) to the input C terminal of the tissue-equivalent interface circuit defined

by the ISO 14117 standard shown in Figure 2. Unlike smart scales or smart watch devices, this instrument gave us

total control to change the frequency, the amplitude of the signal, as well as the signal measurement duration at each

frequency. For each device tested from Boston Scientific, Medtronic (Minneapolis, MN), and Abbott (Chicago, IL), we

performed a frequency sweep increasing the frequency from 1 Hz to 1,000 kHz. In order to save time, the frequency
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lists were chosen with more frequencies in the lower kHz range and fewer above 100 kHz, since the low frequency

region is the most restricted in the norm. At each of the 43 frequencies tested, we then performed a signal’s voltage

amplitude sweep increasing the voltage in steps from 2 millivolts peak-to-peak (mVpp) up to 2 Vpp (the maximum

value generated by the bioimpedance instrument used) or until interference was detected. For each frequency and

amplitude tested, the total measurement duration was 60 seconds.

All devices were tested in basic pacing modes with standard programming, at highest sensitivity settings to simulate

worst-case scenarios. Hardware used was that available to the investigators from clinical explants, and expired inventory;

no Medtronic defibrillator lead was available for testing. No generator battery was at elective replacement interval. Only

the RV lead was attached to the generator during testing, and atrial sensing was deactivated on all generators. Testing

was performed during programmer connection, to assess for device detection of noise, and appropriate or inappropriate

categorization of signals as noise versus inappropriate over-sensing of noise signals. Sensing and pacing responses were

noted. The specific tested hardware and setting configurations are reported in Table 1. Abbott and Boston Scientific

were tested in common mode (i.e., creating the potential difference referenced to the local common or ground), with

the anode and cathode connected to terminals F and G of the equivalent circuit, and the generator grounded through

terminal J. Medtronic generator was tested in differential mode, that is creating the potential difference between the two

terminals anode and cathode connected between the coupled outputs F and G and the output J of the tissue-equivalent

interface.
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Results

Simulation results

Segmental body composition simulations using a smart scale

Table 2 summarizes the voltage induced at the pacing electrodes for PPM and ICD during current-driven FEM

bioimpedance simulations across the legs, the arms, and the trunk. At frequencies above 3 and below 167 kHz, the

ISO 14117 standard establishes a maximum voltage amplitude value that increases linearly by 6 mVpp/kHz. Above

167 and below 1000 kHz, the maximum voltage amplitude is set constant to 1 Vpp. As expected, due to the electrical

properties of tissues and fluids at the range of frequencies simulated, the level of electrical interference varied with

the frequency. The greatest variability was observed in the male model for both PPMs and ICDs simulations. Table 2

shows sex-differences in the level of interference between models, with voltage values that were lower in the female

model compared to the male model. The differences between models is due to both body dimensions and the pose

of the phantoms since tissue properties were taken from the same database. There was also variation in the level of

interference during left or right body composition simulation, with a higher level of interference in simulations on the

left side of the body where the device is implanted. We found different levels of interference during PPM simulations in

unipolar and bipolar configurations, with higher interference values at low frequency in unipolar mode due to the greater

distance between anode and cathode. Finally, PPM results in Table 2 show that the level of electrical interference was

below the threshold values determined by the ISO 14117 standard at frequencies starting at 3 and 10 kHz for female

and male models, respectively. For ICDs, these frequencies are 5 and 50 kHz for female and male models, respectively.

Considering the worst case at each frequency simulated, the safe current that does not induce an interference exceeding

the threshold value of the norm increased with the frequency, with the most restrictive maximum safe current value

being 51.2 µArms at 3 kHz.

Segmental body composition simulations using a smart watch

Table 3 summarizes the voltage induced at the pacing electrodes for PPM and ICD during left wrist to right thumb and

right index finger voltage-driven FEM bioimpedance simulations. Induced voltage values are below the ISO 14117

threshold starting at 100 kHz in both male and female models. Unlike hand-to-foot current driven simulations in

Table 2, the induced voltage during wrist-to-finger simulations in the female model are higher than the male model.

Interference voltages produced during voltage-driven simulations reported in Table 3 are larger than those reported with

current-driven simulations in Table 2. Considering 5 kHz as the worst case, the maximum safe voltage value that does

not induce an interference exceeding the threshold value of the standard is 66 mVpp.

Finger electrodermal activity simulations using a smart ring

Table 4 summarizes the voltage induced at the pacing electrodes for PPM and ICD during single-frequency finger EDA

voltage-driven FEM bioimpedance simulations. Although an EDA measurement using a smart ring is mostly focused

around the finger, Table 4 shows the distribution of electric potential induced in the PPM and ICD pacing electrodes

exceeds the 2 mVpp maximum value allowed by the ISO 14117 standard. The level of interference is higher in the

female model than in the male model, with higher voltage values in bipolar configuration than in unipolar configuration.
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Considering the worst case simulated (female with PPM in bipolar configuration), the maximum voltage amplitude that

does not exceed the threshold value of the norm at 10 Hz is 20 mVpp.

Benchtop results

Benchtop interference test results are summarized in Table 5. The table shows, for each tested frequency from 1 Hz to

1,000 kHz, the minimum bioimpedance voltage amplitude at which we observed the effect of electrical interference

in the realtime electrocardiograms. Abbott and Boston Scientific were tested in common mode only since this mode

setting already interfered with the devices. Medtronic CRT-D is the only device that was tested in both common and

differential modes. Unlike Abbott and Boston Scientific CRT-Ds, no over-sensing or over-pacing was observed with the

Medtronic CRT-D in common mode when measuring bioimpedance over the entire range of frequencies and amplitudes

tested. We only observed inteference to Medtronic CRT-D in differential mode, and these are the results reported here.

The range of interference varied with signal amplitude and frequency between 5 and 40 Hz for the Boston Scientific

generator; between 10 and 300 Hz, 500 Hz and 1 to 2 kHz for the Abbott generator; and finally, from 1 Hz to 2 kHz for

the Medtronic generator.

Across device manufacturers, CRT-D generators demonstrated susceptibility to over-sensing and pacing inhibition

at signal’s amplitude and frequencies tested. Representative tracings for each manufacturer at selected bioimpedance

frequencies and signal voltage levels are shown in Figure 3. Figure 3 A shows oversensing then appropriate “noise”

categorization on an Abbott CRT-D transitioning from 0.8 Vpp to 1 Vpp at 50 Hz. Figure 3 B shows over-sensing and

pacing inhibition on an Abott CRT-D at 110 mVpp and 1 kHz. Figure 3 C shows noise without detection on a Boston

Scientific CRT-D at 2 Vpp and 5 Hz. Figure 3 D shows intermittent over-sensing and noise categorization on a Boston

Scientific CRT-D at 1.4 Vpp and 200 Hz. Figure 3 E shows oversensing on a Medtronic CRT-D at 10 mVpp and 200

Hz. Finally, Figure 3 F shows noise without detection on a Medtronic CRT-D at 50 mVpp and 900 Hz.
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Discussion

In summary, we performed electrical interference evaluations of bioimpedance technology available on smart scales,

smart watches, and smart rings on CIEDs following FDA’s accepted ISO 14177 standard. First, we evaluated the level

of electrical interference on a male and a female computable human model with simulations. Our approach facilitates

consistency, predictability, and reproducibility of the simulation results since they are not specific to a particular cohort

nor are they affected by experimental confounding factors such as additional electromagnetic interference from external

sources. Another advantage of simulations is the ability to measure and visualize the voltage and current flowing

through any part of the human model (Supplementary Figure 1). A challenge associated with realistic simulations

like ours is to verify the results are accurate, given the high number of simulation parameters. For this, we first set

our simulation settings modeling a basic geometry for which there are theoretical bioimpedance models available

The agreement between predicted theoretical and simulation voltage values was excellent with a relative error lower

than 0.05%. These analyses were then extended to determine the level of interference generated with bioimpedance

following ISO 14117 test methodologies using a tissue-interface equivalent circuit. The test bench study adopted

here allows technical requirements to be standardized in order to be able to perform a head-to-head comparison of

interference in CIEDs from different manufacturers under a variety of reproducible test cases and conditions.

Our results are novel and timely because there are consumer devices with bioimpedance sensing capabilities that

are already commercially available. These results expand the current knowledge on electromagnetic interference

with CIEDs.16–19 Simulations considering smart scale, wearable smart watch, and smart ring use cases show the

level of bioimpedance interference depends on the signal frequency, signal amplitude, sex, body segment measured,

distance between anode and cathode, pacing mode, as well as the strategy used to measure bioimpedance. Additional

experimental factors that we found to influence the extent of bioimpedance electrical interference in CIEDs during

benchtop testing included gain and sensitivity settings.

The only existing studies that have evaluated electrical interference during bioimpedance measurements in CIEDs

focused on monitoring device anomalies and adverse events in patients with these devices.20 Buch et al. reported

no anomalies in 20 patients with ICDs undergoing bioimpedance measurements using the InBody 520 instrument

(Seoul, South Korea).21 Subjects were measured across both legs, arms, and the trunk at 5, 50, and 500 kHz but

the signal amplitude and the duration of exposure were not provided. Similar results were reported by Meyer et al.

on 63 patients equipped with ICDs using the Nutriguard MS instrument (DataInput Gmbh, Darmstadt, Germany)

measuring hand-to-foot at 5, 50, and 100 kHz with a current amplitude of 800 microamperes.22 Meyer et al. results

were consistent with recent studies from Chabin et al. and Roehrich et al. using the same instrument.12, 13 In these

two studies, the authors analyzed separately the results obtained by different CIED manufacturers but did not assess

the impact of duration of exposure or lead characteristics.16 The authors found no changes in pacing thresholds nor

observed inappropriate sensing in intracardiac electrograms measuring over 200 patients, regardless of the body side

(left or right) measured,13 and pacing mode or configuration (unipolar or bipolar)12. Roehrich et al., however, did report

the ocurrence of arrhythmic events on the same day of the measurement in 6 patients with recent history of documented

paroxysmal atrial fibrillation (1 subject) and recurrent ventricular tachycardia (5 subjects), but the authors determined
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these to be coincidental and not triggered by bioimpedance testing.

Despite these observational studies asserting that bioimpedance can be safely performed in patients equipped with

CIEDs,12, 22 our results suggest that analyzing only disturbances in CIED behavior attributable to electrical interference

might be insufficient to corroborate bioimpedance safety in patients with these devices. Simulation data reported show

evidence of potential interference based on FDA-recognized threshold voltages at the pacing electrodes defined in

the ISO 14117 standard. Case in point, considering 5 kHz as the lowest and most restrictive frequency measured in

Meyer et al. and Chabin et al., our simulations suggest the maximum safe current is 90.2 µArms, which is three times

less current than that applied in these studies.12, 22 Also, our benchtop results suggest that, at the tested voltages and

frequencies, commercially available devices with bioimpedance technology could exceed current standards and at least

have the theoretical “potential” to interfere, with undesirably disastrous consequences. Over-sensing or over-detecting

could lead to (a) withholding life-saving pacing in a pacer-dependent patient or (b) inappropriate shocks in an ICD

patient often resulting in posttraumatic stress disorder.23

While manufacturers use filters in their CIEDs to attenuate signals out of the physiological frequency range of the

heart, detailed information on these protection circuits as well as noise detection algorithms are proprietary and differ

among manufacturers (see an example in Table 5). Medtronic’s generator was the only one of the devices tested to have

no interference in common mode, thus suggesting that both internal circuitry and algorithm are more robust against

common-mode bioimpedance inteference than Abbott and Boston Scientific generators tested.

Finally, the technical specifications of consumer devices with bioimpedance technology vary according to manufac-

turer, device, and intended use case, thereby requiring a case-by-case objective and quantitative interference evaluation.

Given our findings, it is imperative to extend this study to test broader variety of hardware and settings, and then test

patients with CIEDs to understand the translation of our findings to patients using such consumer electronics.

Study limitations

The results of this work have a number of limitations. First, the ISO 14117 standard does not define specific tests for

devices with bioimpedance technology. Second, the voltage threshold values at the pacing electrodes are defined in the

ISO 14117 standard via single-ended bench voltage measurements, where the CIED can is physically connected to a 0

Volts reference voltage point or electrical ground (i.e., terminal J in Figure 2 A) from which these voltages are measured.

However, in real life, patients with or without CIEDs, who undergo bioimpedance measurements are intentionally not

grounded to protect them from potentially harmful electrical shock hazards and leakage currents as defined by the

standard IEC 60601 for medical electrical equipment.24 Third, the results obtained from testing the tissue-interface

defined by the ISO 14117 standard are limited since the standard assumes an equivalent electrical circuit that represents

a simplification of the body impedance. Another limitation of the tissue-interface is that it does not include the effect

of tissue-electrode contact impedances, which will impact the correct functioning of CIEDs during bioimpedance

testing. Fourth, although computable human models are more realistic than a tissue-equivalent circuit, they are still

approximations of human anatomy and therefore have limitations. Fifth, benchtop testing was performed with CRT-Ds

programmed at the highest sensitivity in bipolar configurations, to emulate a “worst-case scenario”. More conservative

programming and/or unipolar configurations, also including a conduction medium, may generate different results.
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Additionally, testing was performed on hardware available to the investigators due to clinical explant (generators) and/or

expired stock (leads). Therefore, limited combinations of generators/leads were available for testing. Then we focused

RV lead only as that was the leads available and they would be most consequential for interference – over-sensing leads

to both inhibition of pacing and inappropriate detection of VT/VF. Lastly, the translation of these in silico findings and

benchtop testing using direct connections to CIED leads, to sensed signals including the effect of electrode contact

impedance across the human body remains unknown and awaits further investigation in future (pre-)clinical studies.
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Conclusions

This study provides benchmark data to evaluate the safety of smart scales, smart watches, and smart rings with

bioimpedance technology on CIEDs. The methodology and results presented represent the most comprehensive

technical analysis today available on the level of interference induced by bioimpedance devices on CIEDs using FDA’s

accepted ISO 14117 standard as a reference. Our results suggest that electronic devices with bioimpedance technology

could induce an electric voltage exceeding ISO 14117 maximum values for CIEDs. These serious adverse events may

occur without forewarning in patients with CIEDs and have the potential to interfere with lifesaving therapy when these

patients undergo bioimpedance measurements using smart scales, wearable smart watches and smart rings. The present

findings do not recommend the use of these devices with bioimpedance technology in this population due to potential

electrical interference. These results also call for a review and update of the ISO 14117 standard to define new specific

tests for devices with bioimpedance technology. Future clinical studies should take our findings into account and

include further confirmatory simulation and benchtop studies considering worst-case conditions to determine clinical

relevance and corroborate safety of smart scales, wearable smart watches and smart rings with bioimpedance technology

in patients with CIEDs.
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Figure captions

Figure 1. Computer-aided models for electrical safety ICD and PPM evaluation during finite element model

bioimpedance simulations. Examples of (A) male model hand-to-foot segmental body composition simulation with a

smart scale, (B) male model wrist-to-finger segmental body composition simulation with a smart watch, (C) and female

model finger electrodermal activity simulation with a smart ring. (D) Detail of the ICD simulated implant. The ICD

lead is placed into the heart via the central veins with the proximal shock coil positioned in the superior vena cava

whereas the distal shock coil and pacing electrodes positioned into the right ventricle.
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Figure 2. Tissue-equivalent interface circuit for benchtop testing. (A) Electrical connections specified in the ISO

14117 standard to check for electrical interference during benchtop testing connected to a common-mode single-channel

bipolar device under test. In differential mode, the single-channel bipolar device under test is connected between the

coupled outputs F and G and the output J of the tissue-equivalent interface. (B) Three-dimensional rendering of the

tissue-interface built for benchtop testing to check for device over-pacing or over-sensing.
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Figure 3. Sample cardiac implantable electronic device tracings across vendors.
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Table captions

Table 1. Characteristics and programming of tested devices.

Table 2. Voltage induced at the PPM and ICD pacing electrodes during hand-to-foot segmental body composi-

tion bioimpedance simulations with a smart scale. The results are the induced voltage in millivolts peak-to-peak

(mVpp) recorded at the anode and the cathode in unipolar and bipolar configurations measuring left- and right-body

composition bioimpedance at frequencies of electrical current from 3 to 1,000 kiloHertz (kHz) with 200 microamperes

root-mean-square (µArms). The safe current column contains the amplitude of current (in µArms) that is safe to inject

to not exceed the maximum ISO 14117 threshold voltage. The cells highlighted correspond to values that exceed the

maximum allowed by the ISO 14117 standard.

Table 3. Voltage induced at the PPM and ICD pacing electrodes during wrist-to-finger segmental body composi-

tion bioimpedance simulations with a smart watch. The results are the induced voltage in millivolts peak-to-peak

(mVpp) recorded at the anode and the cathode in unipolar and bipolar configurations measuring wrist-to-finger segmen-

tal body composition bioimpedance at frequencies of electrical current from 5 to 200 kiloHertz (kHz) with 1 Volt peak

to peak (Vpp). The safe current column contains the amplitude of voltage (in mVpp) that is safe to apply to not exceed

the maximum ISO 14117 threshold voltage. The cells highlighted correspond to values that exceed the maximum

allowed by the ISO 14117 standard.

Table 4. Voltage induced at the PPM and ICD pacing electrodes during finger electrodermal simulation with

a smart ring. The results are the induced voltage in millivolts peak-to-peak (mVpp) recorded at the anode and the

cathode in unipolar and bipolar configuration measuring electrodermal activity at frequency of electrical current 10

Hertz with 1 Volt peak to peak (Vpp). The safe current column contains the amplitude of voltage (in mVpp) that is

safe to apply to not exceed the maximum ISO 14117 threshold voltage. The cells highlighted correspond to values that

exceed the maximum allowed by the ISO 14117 standard.

Table 5. Data on the outcome of CRT-D during bioimpedance benchtop testing at various frequencies and voltage

amplitude levels. For each frequency evaluated (in Hertz), we determined the minimum voltage amplitude (in millivolts

peak) that caused electrical interference in the form of over-sensing or over-pacing.
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Supplementary figure captions

Supplementary figure 1. Smart watch simulation showing the electrical current distribution (A) and voltage

(B) within the body during a wrist-to-finger body composition measurement applying a voltage stimulus with

amplitude 0.5 Vpp.
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Supplementary table captions

Supplementary table 1. Physical dimensions of commercially available implantable cardioverter defibrillators and

permanent pacemakers.

Supplementary Table 2. Physical dimensions of commercially available pacemaker leads.
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