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Abstract—Objective: Modern lifestyles are triggering stress at
a disproportionate rate for longer periods of time. Chronic or
long-lasting stress can pose a risk to our health. Despite ad-
vances in physiological recording methods, mental stress remains
challenging to quantify and monitor. Methods: We describe an
Internet of Medical Things (IoMT) device with electrocardiogram
(ECG) recording features. The recorded ECG signal is processed
on-the-fly to calculate, in real time, heart rate, heart rate
variability, energy expenditure and mental stress. Data are sent
to an online platform using a standard Internet of Things (IoT)
publish-subscribe messaging transport protocol for continuous
monitoring. Results: The system functionality is first validated by
performing hardware-in-the-loop measurements connected to a
patient simulator. We then monitored induced stress by recording
ECG in subjects using liquid metal electrodes performing a plank
walking task in a virtual reality (VR) environment with high
heights exposure. The results demonstrate our IoMT system’s
ability to provide accurate ECG metrics using novel liquid metal
electrodes by detecting continuously increased stress values in a
VR setting and at-home. Conclusion: The IoMT measurement
device presented provides a novel strategy for monitoring stress
in real time. Significance: Our work provides the opportunity for
future research on psychological stress and emotion regulation
within daily life and the physiological mechanisms through which
it influences the health of both children and adults.

Index Terms—Internet of Medical Things (IoMT), electrocar-
diogram (ECG), heart rate (HR), stress, liquid metal electrodes.

I. INTRODUCTION

PSYCHOLOGICAL stress is a complex psychobiological
phenomenon that occurs when individuals encounter en-

vironmental demands that exceed their resources for meeting
these demands [1]. Stress activation triggers a complex chain
of physiological events commonly referred to as the “fight
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Fig. 1. Schematic of the sensitivity to stimuli outside the human body, also
known as exteroception, and our felt experience of the internal workings of
the human body known as interoception, affecting our emotions and stress in
particular.

or flight” response, evolved to facilitate human survival in
the face of acute physical danger, but it takes a long-term
toll on human health. Specifically, cumulative wear and tear
across the total complex of stress-regulatory systems, typically
described as allostatic load [2], [3], has deleterious health
consequences [4], [5]. Hence, capturing the dynamic process
of stress-regulation as it unfolds within daily life has been a
chief goal of health psychologists investigating the biological
mechanisms of stress and long-term health.

Current studies postulate that external stimuli act on the
cortex and generate an autonomic action, also known as
emotions, including stress [6]. It is then the awareness of
those physiological changes and the sensory input that results
in the feelings that we describe (see Figure 1). Yet capturing
stress-regulation has proven challenging. Typically, researchers
bring subjects into laboratories and observe their behavior and
physiology as they undergo naturalistic social interactions [7]–
[15]. During these interactions, subjects are typically wired to
benchtop equipment for comprehensive psychophysiological
assessment of autonomic nervous system functioning (heart
rate –HR– derived from the electrocardiogram, blood pressure,
heart rate variability –HRV–, respiration, or electrodermal
activation).

Scientists uniformly acknowledge that patterns of physi-



IEEE INTERNET OF THINGS JOURNAL 2

ological reactivity observed during laboratory-based interac-
tions including stress may not generalize to the real world
out-of-the-lab context, given the artificiality of the laboratory
environment and the participants’ ongoing awareness of being
observed.

However, measuring stress during realistic out-of-the-lab
interactions has been limited due to challenges related to a
lack in wearability, accuracy, and reliability of existing de-
vices. Indeed, only one published study has directly compared
autonomic reactivity during laboratory-based and home-based
interactions using the same equipment (ambulatory assess-
ment of electrocardiogram using wearable electrodes) [16].
The authors found significantly greater HR reactivity during
the home assessment than during the laboratory assessment,
suggesting that participants might be editing their behavior in
the laboratory in a socially desirable direction.

Current and emerging wearable Internet of Medical Things
(IoMT) devices provide an effective opportunity to solve this
problem [17]. Cost affordable, open source hardware and
software development platforms like Raspberry Pi, Beaglebone
and Arduino can be used to develop state-of-the-art wearable
IoMT devices for continuous electrocardiographic (ECG)-
based stress monitoring [18]. However, achieving adoption
of IoMT devices requires easy-to-use technology and thus
devices that rely on a computer or smartphone running off-line
data processing algorithms do not provide an optimal solution.

Here, we describe a fully software embedded IoMT ECG-
based device for continuous beat-to-beat monitoring of HR,
HRV, energy expenditure and mental stress (Figure 2). The
latest system integrates a newer analog front end version
based on our recently developed IoMT platform [19]. We
describe and characterize the ECG signal chain as well as
the new ECG and IoMT functionalities. In addition, we
built and characterized conductive polymer encapsulated liquid
metal electrodes for uninterrupted ECG recording. Finally, we
validate the system and liquid metal electrodes by performing
continuous lab-based and home-based monitoring of stress.

II. MATERIALS

A. System description

An overview of the up-to-date system functionality devel-
oped at the University of Utah is shown in Figure 2. The
hardware device is based on the commercially available Red
Pitaya platform, which integrates a System-on-Chip (SoC)
Zynq-7010 (Xilinx, Inc., San Jose, CA). The SoC combines
ARM dual-core Cortex-A9 MPCore processors with a field
programmable gate array (FPGA), analog-to-digital converter
(ADC) LTC2145 (125 Ms s−1, 14 bits, Analog Devices, Inc.,
Norwood, MA, USA), and digital-to-analog converter (DAC)
AD9767 (125 Ms s−1, 14 bits, Analog Devices, Inc.). The
system’s size footprint is 107×60×21 mm (length × width ×
height) and is powered by an AC/DC adapter. The high-speed
ADC and DAC channels on the Red Pitaya interface with our
new analog front end (AFE) circuitry explained below. The
input voltage is 5 V and the maximum and nominal power
consumption are 2 A and <0.9 A, respectively.

B. Hardware

The new hardware architecture of the developed AFE,
shown in Figure 3, now supports up to 16 impedance channels
and one biopotential channel for ECG measurement. The
AFE includes two DB15 ports to connect the electrode cables
for impedance and ECG measurements, while the expansion
connectors on the middle are used to provide power supply
to the AFE board, generate high-speed digital signals for
impedance control, and acquire the ECG signal.

Compared to our previous impedance AFE [19], the new
AFE bioimpedance signal chain includes a mirrored current
source (AD830, Analog Devices, Inc.), a differential amplifier
and a total of four 16-to-1 multiplexers (ADG1406, Analog
Devices, Inc.) for impedance measurements. The bioimped-
ance current and voltage signals from the ADC and DAC are
filtered with 50 Ω low-pass filters from DC to 3 MHz (SXLP-
3+, Mini-Circuits, Brooklyn, NY).

The biopotential AFE for ECG measurements tested in this
work is based on TLV245x amplifiers (Texas Instruments, Inc.,
Dallas, TX) operating with a single power supply (3.3 V). It
uses a driven right leg circuit to offset the subject’s body to a
DC common mode voltage, centering the biopotential signals
with respect to the amplifier’s input voltage range. The 3-
lead ECG AFE is configured with a gain of 60 dB (1000)
distributed in three stages with gains of 10, 20 and 5 in the
first, second and third stages, respectively. The DC input range
was set to ±200 mV. The bandwidth ranges from 0.05 Hz to
10 kHz and the common mode rejection ratio is 126 dB at 50
Hz [20].

C. Software

The architecture of the implemented embedded software is
presented in Figure 4. The Zynq system-on-chip device runs
the software application on a Linux operating system that con-
trols the ARM-based processor and the firmware application
which defines the FPGA configuration for DAC generation
and ADC acquisition. The software is a multi-thread appli-
cation using circular buffers as inter-process communication
mechanisms (IPC), which allow us to increase modularity
and code re-usability for future development. The application
runs five different user-level threads: (1) ADC impedance data
acquisition, (2) impedance data processing and calculation, (3)
ADC biopotential data acquisition, (4) algorithm calculation
and (5) Internet of Things (IoT) data management. Below the
user layer, there is a service layer handling data persistence,
remote web access, digital signal processing services, self-test
monitoring processes, FPGA data and configuration interface,
and finally, the low level microcontroller abstraction layer
(MCAL) handling the drivers for network communications,
memory media and ADC/DAC modules.

The structure of our architecture is based on C-language
code and libraries running on embedded Linux. The web
access is provided by an NGINX open source web server
(NGINX, Inc., San Francisco, CA, USA). This web access
allows the user to configure measurement parameters and
visualize in real-time both impedance and ECG signal data
processing requiring high bandwidth. The NGINX server uses
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Fig. 2. System functionality of the materials, device and algorithms developed.

Fig. 3. (A) Overview of the hardware architecture. (B) Bottom and (C)
top views of the custom built analog front end (AFE). The system is based
on the Red Pitaya (RP) development board and a 16-channel AFE for
bioimpedance (Z) and electrocardiogram (ECG) measurement. The Ethernet
and WiFi peripherals are used for RP Internet communication and the USB
bus is for system maintenance and debug. The current excitation for Z
measurement is generated in the RP with the digital to analog converter (DAC)
connected to a mirrored current source in the AFE. The impedance voltage
signal is filtered, then conditioned with a differential amplifier, and finally
measured with an analog-to-digital (ADC) converter in the RP board. The
biopotential amplifier is used to acquire ECG signals at the same time that
Z is measured. Abbreviations: I± and V±, differential current and voltage
signals for bioimpedance measurement, respectively; E±, differential voltage
signals for ECG measurement; R, reference signal for ECG measurement; Z,
multi-channel electrodes for bioimpedance measurement; MUX, multiplexers;
USB, universal serial bus; WiFi, wireless fidelity; I/O, input/output; DC, direct
current.

a shared object library containing the functional features.
Inside this library POSIX-threads are used to create the multi-
thread environment, together with mutex artifacts to manage
resource access from the threads. Using a customized applica-
tion programming interface the software can access the FPGA
firmware. Low level drivers, data persistence and other tasks
are directly managed by the Linux kernel.

D. ECG algorithm

We used the Heartkey algorithm (B-Secur, Ltd., Belfast) to
process the 3-lead ECG signal in real time (see Figure 5).
Figure 6 shows the main stages, described below.

1) Signal conditioning: The signal conditioning module
is the initial step in processing acquired ECG samples. The
aim of this stage is to identify and remove noise from the
raw signal. It is common that noise in the forms of power
line frequency (50 or 60Hz depending on the geographic
region), muscle noise, motion and baseline wander (low fre-
quency artifact) are present on the signal. This is accom-
plished through two main stages: (1), Signal Quality Analysis
Stage for signal processing and noise annotation; and (2),
Pre-Processing including filtering the signal. Within the first
Analysis Stage, leads on/off Status and other noise events are
checked. To reduce noise and ensure the signals of the desired
ECG frequency range are passed through the higher processing
stages, the signal enters the Pre-Processing stage. This stage
comprises a number of filtering stages including high pass/low
pass and notch filters. The two stages work together to produce
filtered ECG samples suitable for waveform analysis.

The QRS Detection and Analysis modules take the filtered
ECG samples as an input and identifies the location of the QRS
complex. QRS detection is based on a real time QRS location
technique which involves further filtering of the ECG signal to
extract the QRS component of the ECG. The analysis involves
examining each beat and making a decision on whether it is
a genuine beat or in band noise.

The next stage is the RR interval module. The primary
responsibility of this module is to calculate the valid RR
interval series, which is defined as the time between a peak and
the previous peak. In addition to reporting the time between
R peaks, the RR calculation also contains an outliers removal
function to ensure any misidentified noise peaks are detected
and removed in noisy RR series. Outliers are removed to
ensure that the calculated RR intervals are valid and within
an expected range.

2) Heart rate: The HR algorithm is designed to detect heart
rates in the range of 30 beats per minute (20 ms RR interval)
to 300 beats per minute (2000 ms RR interval). Thus, any
intervals outside these limits are rejected. The last nine RR
intervals which pass the above checks will be stored, and the
median value used to calculate the HR. Once nine intervals
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Fig. 4. Overview of the embedded software architecture. Abbreviations: MCAL, microcontroller abstraction layer; ADC, analog to digital converter; DAC,
digital to analog converter; FPGA, field programmable gate array; OS, Linux operating system; IPC buffer, inter-process communication buffer.

Fig. 5. A basic electrocardiogram waveform. Heart rate variability (HRV) is
the fluctuation in time between two consecutive heart beats, as determined by
the RR segment. HRV is associated with impaired regulatory and homeostatic
autonomic nervous system functions, which reduce the body’s ability to cope
with internal and external stressors (see Figure 1).

Fig. 6. Overview of the electrocardiogram (ECG) signal processing module.
The acquired ECG signal is first pre-conditioned to reduce noise interference.
Filtered ECG data is then analyzed to detect QRS complexes, annotate beats
and calculate heart rate, heart rate variability from RR intervals, energy
expenditure and stress.

are available an accuracy flag is set and the progress is 100%.
3) Heart rate variability: The algorithm measures HRV, in-

cluding the root mean square of the successive differences and
standard deviation of the RR Series. The algorithm calculates
the HRV over a 30 second interval and will reset the HRV
calculation if the following events occur: User Not Present or
no RR intervals received for a period of 2.5 minutes.

4) Stress: The Stress feature requires RR interval, HRV
data and MetaData information from the user (gender, age,
weight, and height). The library will measure the stress value
of the user as a value from 0 to 100 and will calculate the
stress over a 30 second interval (i.e., latency).

5) Energy expenditure: This algorithm considers the user’s
physiological data while utilizing HR and HRV measurements
against time to detect changes in an individual’s energy
demands. The algorithm outputs a value in the form of kilo-
calories per minute. Energy expenditure values are calculated
on an accumulation basis and displayed for that individual.
The algorithm provides active energy expenditure (e.g., energy
burnt during activities such as walking and running) and rest
energy expenditure (i.e., baseline metabolic energy consumed
by the body).

E. Internet of Things communication protocol
IoT communication is performed using the message queu-

ing telemetry transport protocol (MQTT). The application
relies on the Paho MQTT-C client implementation. This code
is dynamically linked using a shared object and provides
encrypted MQTT connectivity. MQTT protocol is used to
send beat-to-beat HR (in beats per minute), HRV, energy
expenditure and stress data periodically as well as other system
status information. In our software application, the type of
information, topics, period and other configuration parameters
were adapted to the IoT Kaaiot server.
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III. METHODS

A. Liquid metal electrodes

Liquid metal electrodes of dimensions 2 cm×2 cm×0.2
mm were fabricated using Eutetctic Gallium Indium (EGaIn,
≥99.99% trace metals basis, Sigma-Aldrich, Inc., St. Louis,
MO) and polydimethylsiloxane (PDMS, 250 µm thickness
(Stockwell Elastomerics, Inc., Philadelphia, PA). The electrode
consisted of the liquid metal encased by two layers of PDMS.
The bottom PDMS surface was treated using O2 plasma
treatment for five minutes to improve the spread of EGaIn.
The total thickness of the liquid metal sheet sandwiched
by the PDMS films is 700 µm. The electrode site was
prepared by removing a 4 mm diameter hole at the center
of the top PDMS layer. Poly (3,4-ethylene dioxythiophene)
(PEDOT) was electrodeposited using a potentiostat (SP-150,
Bio-logic, France) with a three-electrode system. Platinum
and silver/silver chloride wires were used as the counter and
reference electrodes, respectively.

First, gold nanoparticles were deposited on the exposed liq-
uid metal surface by electrochemical deposition. Aqueous gold
solution was prepared from 0.2 mM gold (III) chloride hy-
drate (Hydrogen tetrachloroaurate hydrate, HAuCl4, 99.999%,
Acros organics, USA) and 0.1 M potassium chloride (KCl,
99.5%, Sigma-Aldrich) [21]. The electrochemical deposition
was performed using a negative potential (Au3++3e− → Au)
to prevent the formation of an oxide layer and provide a
uniform electrical field on the liquid metal. The deposition was
conducted from -2.0 V for 10 minutes to guarantee uniform
coating with 500 nm thickness on the entire liquid metal
surface.

Next, biocompatible PEDOT was prepared from the non-
aqueous electrolyte, propylene carbonate (PC, anhydrous,
99.7%). Tetraethylammonium tetrafluoroborate (TEABF4,
0.12 M, 99%) was selected as a suitable dopant, which is non-
soluble in a water-dominant environment but dissolves in the
PC electrolyte. The PEDOT was polymerized from ethylene-
dioxythiophene (EDOT, 97%) by an electrochemical reaction
with an anodic current of +1.3 V for 10 minutes. Following
polymerization, the PEDOT was doped by tetrafluoroborate.
Finally, the PEDOT was deposited on the gold nanoparticles
layer to improve biocompatibility.

B. Electrical impedance characterization of liquid metal elec-
trodes

Impedance measurements of liquid metal electrodes were
performed in phosphate buffered saline (1xPBS, pH 7.4,
GibcoTM), a popular physiologic electrolyte to confirm the
electrochemical properties of the bioelectronics. Bode plots
were generated from electrical impedance measurements in
the frequency range between 10 Hz and 0.1 MHz with a 20
mV sinusoidal amplitude. A three-electrode electrochemical
cell system was prepared and evaluated using a potentiostat
(SP-150, Bio-logic, France) with EC-Lab V11.10 software.
The liquid metal electrodes were connected to the working
electrode. Stainless steel mesh (50x50 mm2) and Ag/AgCl
electrode were used as the counter and reference electrodes,
respectively.

Fig. 7. Three lead electrocardiography (ECG) hardware-in-the-loop setup.
The device is connected to the patient simulator (Contect MS400) using 10-
lead ECG cables and to the Internet via an Ethernet connection. The device is
controlled in real time by remote access through the user interface provided
by NGINX web server. Abbreviations: RA, right arm; LA, left arm; LL, left
leg.

C. Electrodes ECG test fixture

We developed a reference electrode characterization setup
to test the liquid metal electrodes measuring finger-based ECG
(Figure 9 A). The system consists of electronic hardware for
ECG acquisition linked to a Bluetooth module. The acquired
ECG signal, via the liquid metal electrodes, is transmitted to
an Android device where the ECG signal and ECG-derived
metrics are plotted and analyzed by an Android application
(Figure 9 B). These metrics are heartbeat detection (number
of heartbeats expected and detected), RR interval detection
(number of RR intervals expected and detected), and time
to first beat detected, the latter a measurement that provides
insight into how quickly the electrode material can acquire
a signal. As part of testing for an ECG electrode use case,
the liquid metal electrodes were placed in the test fixture and
then both index fingers were inserted into the left and right
finger mounts touching the liquid metal electrodes. A third
wet electrode was connected to the wrist using the right-leg
drive connector.

D. Hardware-in-the-loop testing

Figure 7 shows the hardware-in-the-loop (HIL) setup used
to develop and test our real-time IoMT embedded system. A
three lead ECG patient simulator (Contect MS400) was used
to emulate a real patient in order to simulate a controllable
reference ECG signal. The ECG signal was sent to our
system using 3 m long 10-lead ECG cables. The system was
connected to the Internet with an Ethernet cable to provide the
user access to the NGINX web server and IoT connectivity.
For the HIL experiments, the ECG signal beats per minute
was manually changed to test the overall system functionality
to acquire and process, in real time, the ECG signal, detect
QRS complexes and calculate HR, HRV, energy expenditure
and stress data.

E. ECG analysis performance

1) ECG data collection in a motion based protocol:
The ECG data collection protocol using a motion based
protocol consisted of (i), one minute resting baseline while
sitting upright; (ii), one minute light walk followed by one-
minute brisk walk; and (iii), one minute resting recovery
while standing. Note the optimal ECG data collection method
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involves subjects in stationary position. Thus, this protocol
is intentionally challenging as it involves varying levels of
motion to represent realistic out-of-the-lab ECG collection
conditions including the presence of motion artifacts which
may arise. ECG data for the motion protocol was acquired
and compared to an FDA-cleared ECG recording device and
associated analysis software (Faros 180, Bittium Corporation,
Oulu, Finland). For convenience and availability, we used
commercial gel-adhesive electrodes (BlueSensor, Ambu). A
total of 14 subjects (29.5 ± 6.5 years) were measured.

• ECG signal processing. Three ECG signals were col-
lected and processed to produce real time HR. ECG
signals were also processed by the associated software
provided alongside the Holter monitor and used as the
ground truth.

• Data analysis. The average and the mean difference of
the HR was plotted against the ground truth using Bland-
Altman graphs and compared to the American National
Standards Institute EC13 standard for proof-of-concept
validation.

2) Benchmark comparison: The ability of the HeartKey
algorithm to successfully detect the QRS complex amidst
various levels of noise was determined using three PhysioNet
databases publicly available: the MIT-BIH database, the AHA
database, and the ESC (ST-T) database.

F. Stress-induced in a virtual environment by fear of high
heights

We exposed subjects to a stress-inducing environment by
using virtual reality goggles (Oculus Quest 2, Irvine, CA) to
mimic performing a plank walk on the roof of a skyscraper
(Plank not included, 4 Fun Studio, Inc.). The subject did not
have any experience with the virtual reality equipment prior to
the study. In addition, the perceived experience was enhanced
by having subjects stand with their feet on a wooden plank.
During the virtual reality activity, an ECG was recorded using
liquid metal electrodes (Section III-A) and HR, HRV, energy
expenditure and stress were transmitted to an IoT cloud server.
The right and left arm electrodes were placed under the right
and left clavicles, respectively, at the mid-clavicular line within
the rib cage frame; and the leg electrode on the lower left
abdomen within the rib cage frame. This study was approved
by the Institutional Review Board of the University of Utah
(protocol number 00144572).

IV. EXPERIMENTAL RESULTS

A. Liquid metal electrodes characterization

1) Electrode impedance on phosphate buffer saline solu-
tion: The bare liquid metal surface featured a smooth structure
that typically delivers high (worse) electrode impedance than
other structures such as porous or rough surfaces due to a
limited effective electrode surface area. The multi-frequency
data indicate the bare liquid metal surface had an impedance
of approximately 6 kΩ at 100 Hz, which is a representa-
tive frequency for ECG recordings. Surface modification was
performed to improve biocompatibility of the liquid metal

Fig. 8. Electrical impedance spectroscopy characterization results of the poly
(3,4-ethylene dioxythiophene)-coated liquid metal electrodes in phosphate
buffered saline solution compared to bare liquid metal and gold deposition
only.

electrodes using gold nanoparticles and PEDOT. Both layers
produced rough and nano-porous structures on the liquid metal
surface, resulting in a lower impedance: 300 Ω after gold
nanoparticles deposition and 100 Ω after PEDOT deposition.
The final liquid metal-based electrodes provide wearing com-
fort and high electrochemical performance (reduced electrode
impedance) for ECG recordings.

2) Biopotential recording of finger-based ECG signals us-
ing liquid metal electrodes: The liquid metal electrodes’
performance recording ECG signals was tested using the
developed electrode test fixture. An illustrative finger-based
ECG recoding with liquid metal electrodes is shown in Figure
9 B. The included animation video in the Supplementary
Multimedia material is a demonstration of the test electrode
jig measuring finger to finger. The displayed tracing of the
corresponding measurement is the resultant ECG signal. At
the completion of the test, the test file includes the time to first
heartbeat detected, the number of heartbeats detected, and the
number of RR intervals detected.

B. Hardware-in-the-loop verification

The verification test results presented in Figure 10 and
11 were performed using the hardware-in-the-loop approach
interfacing our newly developed system to an ECG patient
simulator. Figure 10A shows the raw ECG signal acquired
continuously in the web browser by accessing the NGINX
server prior to processing. This signal is processed by the
embedded Heartkey algorithm to compute, in real time, the
HR, shown in Figure 10B (80 beats per minute). Figure 11
shows continuous HR, HRV, energy expenditure and stress
data transmitted using MQTT to an IoT cloud server over a
3 minute window. During this time, we manually changed the
HR of the patient simulator in 20 beats per minute increments
from 40 to 200 and vice versa.

C. ECG analysis performance

1) Noise analysis: The aim of these experiments shown in
Figure 12 were to ensure the overall performance of the system
at analyzing ECG data captured in the presence of varying
levels of noise. The results shown in Figure 12 display how the
device was able to remove baseline wander, line interference,
and electrode motion noise from the ECG signal while still
maintaining QRS amplitudes and morphologies.
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Fig. 9. (A) Electrode test fixture developed in this study to test the liquid
metal electrodes for recording finger-to-finger ECG signals. The test fixture
accepts electrode samples up to 25 mm x 25 mm and 0.5 to 1.5 mm in
thickness. We refer the reader to the Supplementary Multimedia material
for further information. (B) Finger-based ECG results using liquid metal
electrodes.

2) HR performance in a motion based protocol: Data
shown in Figure 13 and quantified in Table I compare the per-
formance against a reference FDA-cleared ECG device. Bland-
Altman analysis results had an overall mean HR difference of
0.23, 0.41 and 0.44 bpm from the ground truth during each
respective testing section of the motion protocol.

3) Benchmark comparison: Table II provides a comparison
with selected studies that have reported the performance
results of their algorithms tested in different databases. The
HeartKey algorithm achieved an averaged 98.64% sensitivity
and 99.69% positive predictive value for QRS detection on the
three databases evaluated, which is similar to other reported
algorithms that were tested in the same databases.

D. Lab-based continuous stress monitoring with the subject
exposed to virtual reality high heights during a plank walk

An ECG was recorded on the participating subject using
liquid metal electrodes during an 80 story high plank walk.
ECG, stress and additional metrics were recorded, processed
and sent in real time to an IoT cloud server as shown in Figure
14. During the plank walk, the IoMT device captured changes
in the subject’s HR, HRV, and stress, noting a drop in HRV
while the stress levels increased.

Fig. 10. Screen captures showing the NGINX web server graphical
user interface developed for two different working modes while performing
hardware-in-the-loop testing to validate our new platform: (A) real time
electrocardiogram signal acquired with 80 beats per minute and (B) heart
rate detected (80 beats per minute).

Fig. 11. Screenshot of the IoT server while performing hardware-in-the-
loop measurements with the system connected to the electrocardiogram (ECG)
patient simulator. Recorded results include heart rate (in beats per minute,
orange), heart rate variability (yellow), energy expenditure (green), and stress
(cyan) signal changes manually incrementing the rate in 20 beats per minute
from 40 to 200 beats per minute and vice versa.



IEEE INTERNET OF THINGS JOURNAL 8

Fig. 12. (A) An ECG signal acquired including different sources of error. (B) The processed ECG with Heartkey algorithm shows the ability of our IoMT
device to remove noise while maintaining the shape of the QRS complexes.

TABLE I
BLAND-ALTMAN STATISTICS AND DEVICE HEART RATE COMPARISON RESULTS FOR N = 14 SUBJECTS. ABBREVIATIONS: HR, HEART RATE; BPM,

BEATS PER MINUTE; R, REFERENCE DEVICE; HK, HEARTKEY; CI, CONFIDENCE INTERVALS.

Bland-Altman statistics HR device comparison
HR standard deviation Minimum HR (bpm) Maximum HR (bpm)

Mean
HR

(bpm)

Mean
HK
HR

(bpm)

Mean
dif-
fer-
ence

Mean
CI

R HK R HK R KH

Sitting (baseline) 71 71 0.23 −2.61, 2.64 15.09 15.05 45 45 110 110
Walking 97 97 0.41 −4.50, 4.04 12.77 13.04 97 97 122 121
Standing 94 94 0.44 −3.59, 3.48 14.89 14.74 94 94 125 125

Fig. 13. Example of Bland-Altman plot from one subject comparing the
heart rate detected with HeartKey against a ground truth FDA-cleared ECG
device.

E. Home-based continuous stress monitoring

Figure 15 shows home-based continuous stress measure-
ments in two subjects over a span of 24 hours. Subject A
had 5 h 42 min of recovery, 14 h 4 min of low stress, 2 h 46
min of medium stress, and 1 h 17 min of high stress levels;
for an averaged stress score of 35% over a 24 hours period.
Subject B had a higher average stress level with a stress score
of 67% and 1 min recovery, 1 h 13 min of low stress, 11 h of
medium stress and 3 h 44 min of high stress.

V. DISCUSSION

A. IoMT-enabled home-based assessment of mental stress

The most widely used form of ambulatory assessment
among psychologists studying everyday stress and health

TABLE II
BENCHAMARK COMPARISON OF HEARTKEY QRS DETECTION AGAINST

OTHER REPORTED ALGORITHMS. ABBREVIATIONS: PPV, POSITIVE
PREDICTIVE VALUE; HK, HEARTKEY.

Reference Sensitivity (%) PPV (%) Database

Kunzmann et al. [22] 98.96 99.86

MIT-BIH
Iliev et al. [23] 99.86 99.73
Tabakov et al. [24] 99.37 99.57

HK 98.96 99.86

Kunzmann et al. [22] 97.61 99.83

AHA
Iliev et al. [23] 99.01 99.11
Tabakov et al. [24] 99.65 99.57

HK 97.43 99.60

Kunzmann et al. [22] 97.21 99.90

ESC (ST-T)
Iliev et al. 99.38 99.47
Tabakov et al. [24] 99.85 99.54

HK 99.52 99.62

Kunzmann et al. [22] 98.56 99.82

Average
Iliev et al. [23] 99.41 99.26
Tabakov et al. [24] 99.62 99.56

HK 98.64 99.69

has been ambulatory blood pressure, which has been used
to understand stress-relevant effects of marital interactions
[25]–[28], broader peer and social interactions [29]–[32], and
daily experiences of stress, stigma, discrimination, or social
support [33]–[36]. Although blood pressure is a highly health-
relevant outcome, it provides relatively limited information
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Fig. 14. Screenshot of the IoT server measuring subject’s stress while
exposed to virtual reality high heights during the plank walk. Arrowheads in
red indicate instants of time during the plank walk where the subject’s stress
increased. Recorded results include heart rate (in beats per minute, yellow),
heart rate variability (orange), and stress (green).

Fig. 15. Example of home-based 24-hour continuous monitoring of ECG-
derived stress metrics: normal (A) and abnormal (B) score stress readings.
Each colored bin corresponds to stress data averaged over a period of
5 min. In color, zones of recovery 0%<score≤20% (blue), low stress
20%<score≤50% (green), medium stress 50%<score≤80%(orange), and
high stress 80%<score≤100% (red).

on the broader cascade of autonomic and endocrine phys-
iological processes involved in day-to-day stress-regulation
and emotion-regulation. Relatively few studies combine am-
bulatory blood pressure monitoring with salivary or plasma
assessments of neuroendocrine activity [27], [37], [38]. The
cumbersome nature of ambulatory blood pressure assessment
is an additional (and widely acknowledged) obstacle for its
use over extended periods of time, especially for children and
adolescents.

For the aforementioned reason, psychologists have increas-
ingly noted the potentially game-changing promise of IoMT
technology for future research on psychological stress and
emotion regulation within daily life and the physiological

mechanisms through which it influences the health of both
children and adults [39], [40]. Yet thus far, these promises have
not yet been realized: reliability and validity of commercially
available devices remains a chief concern, especially for
consumer electronic products such as the FitBit, Empatica or
Microsoft Band, which have not been validated as a research
or clinical tool [41]. As an example, the authors in [42]
found no correlation between HRV measures derived by the
Empatica E4 and the same HRV measures derived from the
gold standard device during slow walking or keyboard typing
(Pearson correlations ranged between 0.00 to 0.07). These
results were consistent with another study where the authors
also concluded the Empatica E4 failed to produce reliable HRV
data [43].

Here, we developed a new AFE capable of measuring ECG
and implemented a real-time ECG algorithm (B-Secur, Ltd.,
Belfast, UK) approved by the US Food and Drug Administra-
tion. This algorithm has been clinically validated against ANSI
EC57 and BS EN 60601-2-27 standards analyzing 110,000
heart beats annotated by a cardiologist and the results show a
sensitivity of 99.1% and positive predictive value of 99.86%.
Our results confirm the ability to report, for the first time,
home-based continuous stress monitoring to an IoT cloud
server.

B. ECG analysis performance

ECG signals are prone to noise contamination which can
arise from 50/60 Hz power line interference, the electrode-
skin interface, contact noise, and general motion artifact noise
induced by the subject [44], [45]. The presence of noise
artifacts within ECG signals can be particularly troublesome
as they can trigger false stress values. Algorithms must then
be reinforced by effective signal conditioning to ensure the
processed signal is free of excess noise and thus is reflective of
the true ECG signal. Effective signal conditioning will not only
prevent QRS complexes being removed with noise artifacts,
but it will also prevent the classification of excess noise as
false QRS complexes and have a significant impact on the
calculation of mental stress [46].

Our results in Figure 12 show the performance level of
the HeartKey ECG software library to to obtain accurate and
reliable automated detection of QRS complexes under the
presence of artifacts and noise necessary to calculate HR,
HRV, energy expenditure, and stress data. The results shown in
Figure 13, also summarized in Table I, are within the ±10% or
±5 bpm range recommended by American National Standards
Institute EC13. Despite having measured a relatively small
cohort, these results suggest that our device may be effective
in obtaining medical grade performance when processing in
real-time out-of-the-lab ECG data simulating a challenging
motion-based testing protocol.

A diverse range of algorithms have been reported in the liter-
ature tested against publicly available and annotated databases.
Here, we intentionally did not include in Table II studies
that specifically tested their ECG algorithm in one database
only to prevent a biased comparison. The overall performance
of the QRS detection on the tested database is well within
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the same level of performance compared to other reported
algorithms. We refer the reader to our recently published
work for additional results considering other databases and
uses cases [47]. It is also important to consider the clinical
relevance of the metrics reported in Table II and not just
their numerical difference. From a clinical perspective, the
impact that a sensitivity >97% would have in the “worst
case” scenario with a heart rate of 200 bpm, would equal to
approximately 2-3 missed or extra beats within a 30 second
window, which is not deemed to be clinically significant in
relation arrhythmia detection applications for example.

C. Liquid-metal-based electrodes for ECG wearable biosens-
ing

Comfort, usability, and the ability to gather multiple data
streams in a single device are particularly important for
prolonged (longer than 24 hours) stress monitoring in child,
adolescent and elderly populations. To address this unmet
need, the research community is continuously looking for
better electrode materials and for ways to better collect rel-
evant physiological signals, including ECG [48]. There are
many trade-offs including comfort, contact electrical imped-
ance at the electrode-skin interface, and skin irritation [49]. To
date, silver/silver chloride gel-adhesive electrodes are the gold
standard for electrical recordings thanks to the low contact
impedance between the electrode and the skin. However,
long term recordings (on the order of days) can be severely
affected as the gels dry out over time, thus worsening the
contact impedance [50]. Dry electrodes, on the other hand,
are suitable for prolonged use, but suffer from a high contact
impedance, which reduces the overall signal-to-noise ratio.
[51]. Extreme use cases such as continuous exposure to a
demanding workload over a long period of time including ath-
letic activities, harsh environmental conditions, and repeated
use exacerbate these problems. One of the most promising
materials investigated here is gallium based alloys, which has
been reported to out-perform the standard wet electrode [52].

Gallium based liquid metals have emerged as a promising
material for bioelectronic applications due to their intrinsic
stretchability, low melting point, excellent electrical properties,
and biocompatibility [53]. These unique material properties
allow material scientists to fabricate stretchable and tissue-
compliant bioelectronic devices [54]. However, gallium based
liquid metals have limited biochemical and electrochemical
stability [55], [56]. They are also prone to biodegradation
in humid environments and metal leakage over time [57].
Therefore, proper chemical functionalization is necessary to
ensure the liquid metal electrodes can maintain low interfacial
impedance and chronic stability [58].

In this work, we have demonstrated that conductive poly-
mer functionalized liquid metal electrodes are compliant with
skin tissue and have excellent electrochemical performance
enabling ECG recording to extract health parameters includ-
ing HRV, and HRV-based stress, which, to the best of our
knowledge, is the first time it has been reported.

D. Effects of virtual reality high heights exposure on stress

Virtual reality’s ability to induce a physiological response
[59]–[61] has given rise to a wide variety of useful appli-
cations including: anxiety and phobia [62], managing Post-
Traumatic Stress Disorder [62], modulating pain [63] and
cardiac rehabilitation [64]. In the case of generating dynamic
cardiovascular responses, the work done by Ahmed et al.
considered virtual reality alone, exercise alone, and exercise
combined with virtual reality, with blood pressure, heart rate,
and norepinephrine response as stress indicators [65]. While
there was no comparable rises in virtual reality alone compared
with exercise in maximal HR and norepinephrine levels, there
was a comparable change in HRV, leading the authors to
suggest that VR could be used to mimic moderate but not high
intensity. The limitation of the chosen technology as well as
the experience itself were likely confounding factors affecting
the results of that study.

In this work, we explored the stress effects of high heights
in virtual reality using virtual reality goggles. We leveraged
the innate fear of heights to generate a stress response [66].
In previous experimental settings, [62], subjects were asked to
physically walk on a balance beam while virtually at ground
level or at height. Electroencephalography, cardiac physiolog-
ical parameters and electrodermal activity were recorded. The
authors found that the virtual reality at height decreased HRV
and HR frequency when compared to virtual reality at low
height. Our pilot results are consistent with previous reported
results, as we detected increased stress levels during virtual
high heights.

E. Limitations

The work presented here has a number of limitations. Most
notably, since we measured ECG only, we were restricted to
mainly studying HRV and not other common biomarkers of
psychological stress, such as cortisol or electrodermal activity.
Second, as noted above, the ECG was assessed while subjects
walked on a plank. Future work will include a validation study
of the platform and stress algorithms against the State-Trait
Anxiety Index (STAI) questionnaire. This questionnaire will
be used as a subjective measure of stress to assess the validity
of the algorithm against an individual’s own perception of their
stress levels and those recorded with our device. STAI results
will be tracked for each stage and correlated with partici-
pant ECG-based stress data. Multilevel models will be used
to examine second-by-second correspondence between ECG
data collected through the two different modalities (standard
physiological equipment and our IoMT device). Third, despite
the main focus of this work being to show IoMT feasibility,
we acknowledge the data provided was collected on a limited
number of subjects. A formal assessment of the technology
will require further work and include more subjects, a com-
parison across multiple study sites, as well as comparison to
standard laboratory equipment for the assessment of stress.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

There is an urgent need for better and more accurate
solutions to enable the population to manage their stress
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as it unfolds naturally, across multiple biological systems
and numerous naturalistic settings. The work presented here
demonstrates the feasibility of IoMT to provide an excellent
platform to continuously capture the consequences of mental
stress. Our results show the capability to capture health-
relevant biological consequences of mental stress regulation
in a controlled and repeatable way within day-to-day at home.

IoMT devices that allow the continuous monitoring of stress
can be of value for a wide variety of applications, including:
assessing and enhancing the performance of first responders
and armed forces personnel, improving the performance of
athletes, and reducing mental and physical health disparities
in sexual and gender minorities. Stress training coupled with
these devices can allow individuals to identify when they
are becoming stressed to a critical point when performance
and safety are adversely affected, and to then use techniques,
such as tactical breathing, to restore proper stress levels. It is
currently unclear how the measurement of stress indices can
change the outcomes for these individuals, but it has been
reported that many heart rhythm conditions occur in response
to alterations of autonomic tone. IoMT devices will allow
researchers to explore this area with greater precision to de-
velop new preventive and therapeutic interventions for disease
modification [67], [68]. It has been postulated that there may
be an early change in physiological stress measurements that
precedes the symptomatic changes in disease, which may be
of use in predicting the health course of a patient and potential
deterioration. With continuous at-home stress monitoring and
AI computing [69], these potential predictive trends are being
explored.

Continuous monitoring of one’s physiological state can have
benefits across the spectrum, from managing social life, mini-
mizing the impact of unpleasant events, maximizing workforce
wellness programs, improving performance on a weekend run,
to the prediction of illness in long term health conditions.
The challenge is getting the data quality and interpretation
needed for accurate number. A challenge that is being met
with modern IoMT devices and data science.
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